
117

page 1

Java2VHDL

Dr. Hartmut Schorrig
www.vishia.org

2023-04-12

page 2

Table of Contents

1 Manual how to read, examples and support..6

2. Motivation...7

3. Java2VHDL - approaches..8

3.1. Writing hardware logic in Java, principles...8

3.1.1. Principle of functional simulation of synchronous state machines.............................9

3.2 Timing relations...11

3.2.3. Be careful because of glitches in logic..12

3.3. Data types in Java for Fpga design in VHDL..14

3.3.1. boolean expression and SIGNAL types with view to VHDL.....................................15

3.3.2. Use cases of STD_LOGIC definitions...15

3.4. Modularity, with Object Oriented Approach...16

3.4.1. Modularity in classic VHDL...16

3.4.2. ObjectOriented approaches and their mapping for VHDL.......................................17

3.4.3. References (aggregations) in Object Orientation kind...19

3.4.4. Interface technology in Java for VHDL..23

3.4.5. Overview modularity...30

3.5. Including existing VHDL files..31

3.6. State machines, enum..32

3.6.1. State variable with 1-of-n decoding...32

3.6.2. enum definition in Java...33

3.6.3. state variable as enum..33

3.6.4. query state variables...34

3.6.5. set state variables...35

3.6.6. Nested and parallel states..35

3.7. Test in Java..36

3.7.1 step and update operations...36

3.7.2 Input signals for test simulation in Java...37

3.7.3 Output signals for manually evaluation of the test results..37

3.7.4. Test of modules or the whole design on Java level...39

3.8 Writing style of logic - data assignment versus situation thinking....................................40

3.8.1 Style: Situation evaluation, program flow...40

3.8.2. Style data assignment orientation (data flow)...40

3.8.3. Ternary or condition operator in Java: condition ? a : b...41

3.8.4. Solutions for pure VHDL...41

page 3

3.8.5. Java2VHDL for condition operator..42

3.8.6. Multiplexer in hardware design, problem of WHEN ELSE.......................................42

3.8.7. Programming in loops...43

4. Java2VHDL - User’s guide..44

4.1. Working tree organization for sources and tools...46

4.2. The platform to edit the Java sources for VHDL...47

4.3. Tools necessary for Java to Vhdl translation and test support..48

4.4. The component srcJava_vishiaFpga..49

4.5. The translation Java to VHDL...50

4.6. Java source for top level FPGA class...52

4.7. Java source for Pin definition FPGA class..54

4.8. Java sources for Modules..56

4.8.1. Connections and inner modules...56

4.8.2. Inner class for records and process..58

4.8.3. Included VHDL modules...60

4.8.3 Constructor and init for a module...62

4.8.4 reset, step, update and output in a module..63

4.8.5 Interface access agents in Modules...63

4.8.6 Implementation of module interfaces...65

4.8.6. TestSignalRecorder in a module for Java based test..66

4.9 Java source for an emulated VHDL module..68

4.10 Statements in Java and their translation to VHDL...70

4.10.1 Variable definitions...70

4.10.2 Assignments..71

4.10.3 Expressions, Operations..72

4.10.4 Operands...74

4.10.5 Special operations for bit vectors...76

4.11. Test organization on Java level...78

4.11.1. General execution order for java execution of the FPGA functionality...................79

4.11.2. Execution order inside the FPGA for the test..82

4.11.3. The TestSignalRecorderSet to record test signals from modules..........................83

4.11.4. Evaluation of the recorder test signals..84

4.12 Checking time between FF groups..86

4.12.1 How to set timing constraints for place and route tool..86

4.12.2 Association between PROCESS variables and time GROUPs..............................88

4.12.3 Check of timing between Flipflops in Java...90

5. The example Blinking LED, view to Java sources in respect to the FPGA description

page 4

...92

5.1. The top level FPGA java file...92

5.1.1. Package and class definition, import...92

5.1.2. The modules in the top level...93

5.1.3. step(…) and update() operations..94

5.1.4. interface agents in the top level..95

5.1.5. test output in the top level...95

5.2. The FPGA pin description file...95

5.2.1. How to designate the ioPins file..95

5.2.2. Input and Output inner classes...96

5.2.3. Interface access to the Input pins...97

5.3. A module file...98

5.3.1. Package and class definition, import and module interface....................................98

5.3.2. The references and sub modules of the module...98

5.3.3. Inner static classes in a module which builds a TYPE RECORD and PROCESS in
VHDL..99

5.3.4. step(…) and update() operations..102

5.3.5. interface implementation of the module..103

5.3.6. interface agents or access in a module...104

5.3.7. test output...104

5.4. Instantiate of entities from other VHDL files (PORT MAP)..104

5.4.1. How to use other VHDL files...104

5.4.2. User stories for modularity with VHDL files...105

5.4.3. Module (class) in Java for given VHDL files..106

6. The example Blinking LED, view to Java sources in respect to test on Java level...106

6.1. The main test source..107

6.1.1. Class definition and instances to test and used for test..107

6.1.2. Instantiate a horizontal output recorder...107

6.1.3. Organization of a checked test...108

6.1.4. Initialize stimuli (signals) for the simulation...108

6.1.5. Run the simulation for this test case...108

6.1.6. Output recorded signals..108

6.1.7. Automatically evaluation of test results...109

6.1.8. The main routine for test...109

6.1.9. Test output preparation for the main level...110

6.2. Test support in modules..111

6.2.1. Determination of information to record for output horizontal..................................112

page 5

6.2.2. Store and restore the state of modules as well as the whole simulation state.......112

7. Requests for Change (RFC) for the Java2Vhdl tool..114

page 6 1 Manual how to read, examples and support

1 Manual how to read, examples and support
To study concepts and approaches start with the following chapter 2 Motivation and the following 3.
Java2VHDL - approaches

To use as user’s guide see chapter 4. Java2VHDL - User’s guide

Last not least an example 'BlinkingLed' to build your own first example is given start with chapter 5.
The example Blinking LED, view to Java sources in respect to the FPGA description, and following.

Example code and link

You find a home page of Java2Vhdl on

https://vishia.org/Fpga

Also there, you find a zip file,

currently https://vishia.org/Fpga/deploy/J2Vhdl_Workbox-2023-04-12.zip

and some more in https://vishia.org/Fpga/deploy

This zip file contains the infra structure to work
with own projects. It contains also a
“exmpl_vishiaJ2Vhdl_BlinkingLed” which is a real
working example using a Lattice FPGA test
board from
https://shop.trenz-electronic.de/de/TEL0001-02-
LXO2000-mit-Lattice-XO2-4000-On-Board-USB/
JTAG-2-5-x-6-15-cm. This example is
elaborately explained in chapter 5. The example
Blinking LED, view to Java sources in respect to the FPGA description from page 92 and 6. The
example Blinking LED, view to Java sources in respect to test on Java level from page 106.

This zip file contains all sources which are used here to explain how to do in chapter 4.
Java2VHDL - User’s guide from page 44

located in the zip file in src\vishiaFpga\java\org\vishia\fpga\tmpl_J2Vhdl.

The translator can be started calling src\vishiaFpga\makeScripts\genTmpl_J2Vhdl.bat ,

the result to compare is contained in src\vishiaFpga\makeScripts\genTmpl_J2Vhdl.bat.

The translator itself needs a Java JRE, tested on Oracle’s Java-8 and also with OpenJDK.The jar
files for the translator itself are hosted on

https://vishia.org/Java/deploy

To get the files follow 4.3. Tools necessary for Java to Vhdl translation and test support page 48,
supported by the zip files.

https://vishia.org/Fpga/deploy
https://vishia.org/Fpga/deploy/J2Vhdl_Workbox-2023-04-12.zip
https://vishia.org/Java/deploy
https://shop.trenz-electronic.de/de/TEL0001-02-LXO2000-mit-Lattice-XO2-4000-On-Board-USB/JTAG-2-5-x-6-15-cm
https://shop.trenz-electronic.de/de/TEL0001-02-LXO2000-mit-Lattice-XO2-4000-On-Board-USB/JTAG-2-5-x-6-15-cm
https://shop.trenz-electronic.de/de/TEL0001-02-LXO2000-mit-Lattice-XO2-4000-On-Board-USB/JTAG-2-5-x-6-15-cm
https://shop.trenz-electronic.de/de/TEL0001-02-LXO2000-mit-Lattice-XO2-4000-On-Board-USB/JTAG-2-5-x-6-15-cm
https://shop.trenz-electronic.de/de/TEL0001-02-LXO2000-mit-Lattice-XO2-4000-On-Board-USB/JTAG-2-5-x-6-15-cm
https://vishia.org/Fpga

2. Motivation page 7

2. Motivation
VHDL was originally created in the 1980th for timing simulations of the behavior of ASICs
See https://en.wikipedia.org/wiki/VHDL: In 1983, VHDL was originally developed at the behest of
the U.S. Department of Defense in order to document the behavior of the ASICs that supplier
companies were including in equipment. … (requested on 2022-05-25)

As a second approach it was later used to determine the content of FPGAs (input for routing).

In the earlier time of FPGA development, till mid of 1990th, usual the timing behavior was
evaluated after the routing process, either by timing simulation, or by examination all delays of
paths. With some manually settings (placing, special lines manually routed) the routing is repeated
till all is met. For that also the VHDL was proper.

From approximately mid of 1990th usage of "timing constraints" become more importance. With
timing constraints the router can decide by itself for using routing resources. It means constrains +
logical description is sufficient to get a proper FPGA content. The importance of timing simulation is
no longer given, at least for most of the FPGA content. Only for clock synchronization approaches
or asynchronous parts of logic it is necessary.

The FPGA tool suites support the formulation of timing constraints usual in a special kind. VHDL
has not an meaningful contribution for that.

Also the simulation of hardware designs needs often special tools. Test approaches with
comprehensive functional tests are a special topic.

For all that reasons another way to formulate hardware design content inclusively timing
constraints was searched.

This documentation offers the idea to formulate hardware design with timing constraints and
elaborately possible functional tests, in Java language. The design is oriented to a one clock
system as synchronous state machines. The source code in Java which describes that and which
is used for the functional tests is then translated to VHDL for the routing process. It means, the full
FPGA content can be developed with functional simulation outside of FPGA tool suites. From the
FPGA tools so much as necessary can be used, for example only the routine process with timing
report (to check whether all is met), or for example also a timing simulation for specific signals
outside the functional logic (synchronization with more as one clock or such one). That is all
possible of course, but firstly the synchronous part of the design can be planned and tested
completely only using a Java development environment (such as Eclipse). This supports also
elaborately usage of test possibilities (input signal preparation, evaluation, test control etc.).

The better structure of modularity in Java (with ObjectOriented approach, referencing, interface
technology with simple MOC replacement on test) was not in focus on the motivation phase. It was
the result of developing following Java approaches.

As translation from Java to VHDL the ZBNF parser from the author proven since 2008 was used,
also proven here. (https://vishia.org/ZBNF/index.html). The Java sources are read in, broken down
into syntactic parts and then the VHDL is generated, whereby all cross-connections, e.g. from the
interface call to the implementation instructions, are also evaluated. Using this translation approach
was planned from beginning. A detail: An expression (conditional, assignment etc.) is dispersed in
its parts and presented in the Revers Polish Notation. That clarifies and solves all precedense
rules. From that RPN presentation the VHDL expression is generated, which has partially other
precedense rules. The experience to do this had been available from other translation projects for
many years.

https://vishia.org/ZBNF/index.html
https://en.wikipedia.org/wiki/VHDL

page 8 3. Java2VHDL - approaches

3. Java2VHDL - approaches
This chapter describes which approaches are present by the Java2VHDL system before there are
concrete application instructions. For the concrete application instruction see next main chapter4.
Java2VHDL - User’s guide from page 44 or the particular description of 5. The example Blinking
LED, view to Java sources in respect to the FPGA description from page 92

3.1. Writing hardware logic in Java, principles

Java is one of the most known and used programming languages. In opposite to for example C++
Java is a save language. The commonly small programming mistakes by the users do never cause
a non predictable behavior, they are obviously.

There are two different approaches for Fpga content:

a) Pure hardware logic

b) Using FPGA as platform instead a microcontroller: A microcontroller can react in step times
down to ~ 10 µs. 50 µs are often usual. For faster especially controlling algorithm with step
times of ~ 1 µs the usage of FPGAs becomes more and more familiar, because the FPGA
have enough space, are no more so expensive with much space and the tool suites are more
and more proper.

The approach b) is not handled here. They are other tools such as
https://hdl.github.io/awesome/items/synthesijer/ or programming FPGA in C++ (known since ~
2005) which fulfill this approaches.

This work is related to pure hardware logic.

Writing hardware logic in Java requires knowledge about hardware in FPGA. On the first hand one
should familiar with the internal structures of logic blocks in your FPGA and also with such things
as floorplanner, physical view, timing reports. On the other hand you should familiar with VHDL as
hardware description language. The VHDL is used as bridge between the Java hardware sources
and the place&route tools of the FPGA.

The benefit of writing hardware logic in Java is: You can organize elaborately functional tests. If
your logic is clocked and all time constrains are met, the behavior in the hardware is the same as
the functional behavior in Java. And the functional behavior is the complex one thing, not the
details of behavior of the implemented design in the FPGA also only simulated. It is sufficient to
simulate the functionality in Java, check matching all timing constrains, and the test with the real
hardware FPGA.

A second benefit is: In Java a better module and sub module organization is possible, including the
advantages of Object Oriented assembling of the modules als using the interface concept. The last
one may be importance, if you want to vary your solution for different test approaches, or also for
different implementations with the same sources. Last not least the amount of different sources for
variants are reduced, reuse is more supported as with the module concept of VHDL.

And the last benefit: Java is often proper known from a large spread of persons. The tool support is
well. That are detail advantages.

https://hdl.github.io/awesome/items/synthesijer/

3.1.1. Principle of functional simulation of synchronous state machines page 9

3.1.1. Principle of functional simulation of synchronous state machines

Typically, the bulk of the content of an FPGA should be a synchronous design. It means, all input
signals are gathered by only one clock, and then furthermore used only clock-synchronous.

Secondary hint: Using several clocks for a FPGA design is often not the best choice. If you have
different time ranges for signals, it is better to use one fast clock and several 'clock enable'
strategies. This is especially supported here.

All new states are based on the given states with logical relations, which are then adopted as
current states with the clock edge.

Qn+1 = fn(Qn)

Whereby the input signals are also part of the Q (means all FlipFlop states). The fn (function) is a
only logical relation.

To do the same in any sequential programming
language, firstly all new states should be calculated
newly from the current states without using the new
states itself for calcualtion. That should be done for
the whole functionality (not only module per module),
because elsewhere new states from already
calculated modules may be used by mistake. This
new states are the representation of the signal levels
on the D inputs of the FlipFlops. For that, step() operations are written in Java for each module
and for the whole content.

Then the clock edge comes in hardware, in Java software it is the copy process to declare the new
calculated states as current ones. That is done in Java by update() operations for each module
and for all.

After that, output values can be calculated from the new current states. Alternatively the output
values can also be calculated as the D inputs firstly as new output values, and then copied to the
current state of outputs, they are clocked outputs, also done by update().

Java: Principle for step and update for some modules
 mdl1.step(time);
 mdl2.step(time);
 mdl1.update();
 mdl2.update();

Step and update operations looks like:

Java: One simple step operation in a module
 public void step (int time) {
 this.record_d = new Record(time, this.record, inputs);
 }

It means it creates a new instance and calls the constructor using the previos states and inputs.
The new instance is referenced first in the variable which presents the 'D inputs of Flipflops'.

Java: One simple update operation in a module
 public void update () {
 this.record = this.record_d;
 }

Now all states are available for the next step() and for outputs.

As you see in mnemonic, a module contains some RECORD in VHDL. The constructor is translated to
a VHDL-PROCESS.

Inside the inner class for a 'RECORD' it is recommended to declare all variables as´final. So it
cannot be forgotten to set all, and it is clarified that all RECORD variables are set unique. The

page 10 3.1. Writing hardware logic in Java, principles

template for a constructor looks like:

Java: One simple constructor for a VHDL-PROCESS
 public void RecordType (int time, RecordType z, RefType inputs) {
 if(inputs.module.ce) {
 this.varA = inputs.input && inputs.otherModule.state;
 } else {
 this.varA = z.varA;
 }
 }

The RecordType contains here only a variable final boolean varA;. It is set as combinatoric if a
'clock Enable' comes from another module (for this example) and it is hold (not changed) if … ce is
false. The …state from the other module is of course the state of the last step after update. The z
represents the own state of the last step for the whole RECORD of that PROCESS.

3.2 Timing relations page 11

3.2 Timing relations

The time to build the combinatoric for the D-inputs of the flipflops in the FPGA should be lesser
than the time between the clock edges. Then the logical functionality is also the real functionality.

If delays are longer, the behavior is undefined. That is not admissible. It is controlled by the timing
constraints.

But not all paths should consider the minimal time between the clock edges. For example you can
have a fast clock signal of 200 MHz (5 ns). Some paths should switch in this speed. But not all
paths can met the constraint of 5 ns. If the logic is complex, it is a too much requirement. Usage of
different clocks for different logic parts is really not a good idea, it requires additional effort for
synchronization between the systems. There is a better solution.

Usual the FlipFlops in the Logic Block of a
FPGA have a CE input. It is Clock Enable.
If this input is 0, then the signal on the D
input has no effect. The FF does not
change its state. It means, you can free a
FF for switching with a longer period
though the clock frequency is high. Only
the CE signal should be provided in the
required speed for the clock period. The
other signals to build the logic need only
the CE period respectively the time
between two CE='1'.

You see the clock in the last track, each
rising edge changes the FF state. But
the CE signal controls that only each 5th
clock edge force switch. In this example
the CE is built by a counter which
outputs CE exactly after each 5th clock
edge. But you see also that CE is
delayed. It does not come immediately
after the rising clock edge, it does come
a little bit later and goes later. The
importance is, that CE should be stable
on the rising clock, with a minimal
necessary setup time. CE can also be
delayed, but lesser as one clock period.

In this example the red signal in the first track switches after any rising clock edge, not guarded
with CE. But the green signal switches with clock and CE. The next track shows a long delayed
signal. It is presented here as ramp, because for simulation Simulink (© Mathworks) is used (not
VHDL and a FPGA tool suite). But before the next CE guarded clock edge, the signal arrives its
necessary state, and that is sufficient. So the next CE-enabled clock edge gets the state of the
delayed signal without failure and produces the next dark green output. This output can also in turn
have a delay to its next output, feeding the D input of a FF etc. pp.

In VHDL such behavior can be written in the following form:

PROCESS(CLK, CE) BEGIN
 IF rising_edge(CLK) THEN
 IF CE='1' THEN
 Q2 <= Q1 AND someOtherLogic;
 END IF;

Figure 1: CE on Flipflops

Figure 2: CE in scope

page 12 3.2 Timing relations

 END IF;
END PROCESS

In VHDL it is determined that nothing should be done if CE is not ='1'.

As ideal case CE is an output of a FlipFlop. This output is immediately routed to the CE input of all
using FF. For routing a stable clock net with high fan out is used.

But the router decides by itself how the CE input of the FF in the FPGA are used. See the next
slightly changed example:

PROCESS(CLK, CE) BEGIN
 IF rising_edge(CLK) THEN
 IF CE='1' THEN
 IF(steadyState='1') THEN
 Q2 <= Q1 AND someOtherLogic;
 END IF;
 END IF;
 END IF;
END PROCESS

There is another signal as IF condition, here named as steadyState. Then the routing process can
assemble this signal also to build the CE for the FF inputs. For example if you have a register of 16
or more FF instead the single Q2 and Q1, it saves a lot of routing resources to do so.

Right side see which may be
produced by the router, drawn with
ordinary gatter logic. In the real
FPGA LUTs (Look Up Tables) are
used instead gatter, of course.

How this is related to writing logic in
Java ?

The goal is, determine timeing
constrains (see next chapter) for
some paths. In Java you can
measure the number of clocks
between changing signals,
respectively the number of clocks
how long is a given signal in the steady state. It is very simple. If the signal (variable) is written
newly, similar the current time is also stored. The time is a simple incremented int value (32 bit,
sufficient for 1 billion clock steps). Also a long value may be usable, but seems to be not
necessary.

If the signal is used for combinatoric, the current time is compared with the stored time of the input
signals. Yet an assertion or warning message can be built if this time difference is lesser than
expected.

Details how to do are described in chapter 4.12 Checking time between FF groups page 86.

3.2.3. Be careful because of glitches in logic

Because the CE is built fastly which each clock edge, it should have a less delay. All FF which
should have such an fast delay can be assembled to a FF group, and for that group a constraint
can be written (here for Lattice Diamond FPGA tool):
MAXDELAY FROM GROUP "FFfast" 4.5 ns;

But maybe that the steadyState signal does not switch frequently. It switches only also with the CE
signal as shown in the schema above. Then it can have a longer delay because the fast switching
CE signal itself determines the used CE1 for CE. It means the FF for steadyState may be a
member of the group for CE-driven FF and can be have a longer delay:
MAXDELAY FROM GROUP "FF_CE" 23.0 ns;

Figure 3: CE combinatoric on FlipFlops

3.2.3. Be careful because of glitches in logic page 13

Now the router can use a longer path for the steadyState signal to build a CE signal for other FF.
The longer delay is possible because this signal does not switch independent, it switches only with
CE itself.

It is not expected that the logic for the CE1 with the longer delayed signal steadyState or some
more other signals produces hazards or glitches because the CE itself is also used and it has the
short delay. It determines the output of the LUT to build the CE1 to 0 so long CE='0'.

But you should take care that really one signal with a short path is always member of such an IF
construct. If you write in VHDL
PROCESS(CLK, CE) BEGIN
 IF rising_edge(CLK) THEN
 IF (signal1 XOR signal2)='1' THEN
 Q2 <= Q1 AND someOtherLogic;
 END IF;
 END IF;
END PROCESS

then the router can also use CE to control switching the FF Q2.

If the signal1 and signal2 constrain a longer delay as the
clock period then it is possible that a faulty intermediate
state can occur where the signals are detected as different
(XOR delivers '1') though the signals are not different after
the delay. Then the CE can be '1' by mistake during a clock
edge. It means this is a bad formulation in VHDL. At least
one fast signal should be used as AND logic.

Only for info: In Simulink this is produced by the following
schema:

The TimeSignals S-Function-Block is programmed with the
given input pattern:
%time:0.000000000: LogicInput.signal1 = 0, LogicInput.signal2 = 0;
%time:0.000000050: LogicInput.signal1 = 0, LogicInput.signal2 = 0;
%time:0.000000100: LogicInput.signal1 => 1.0;
%time:0.000000080: LogicInput.signal2 => 1.0;

See also https://vishia.org/smlk/html/SmlkTimeSignals/SmlkTimeSignals.html. .

The signals itself are float with ramps, they are converted by the comparison block to boolean, with
that approach a delay can be simulated. Because the first signal1 reaches the 1-level earlier than
the signal2, temporary the '1' value is built by the XOR. That is a glitch. If the clock edge comes
during the glitch, it is effective and causes a faulty behavior.

Note that the Simulink is not used for FPGA design for this example. It is only used to get
simulation results of this hardware. I have used Simulink because it is my familiar simulation
environment not only for FPGA, but more for controlling approaches. It should be possible for
everybody to use him/here likely tool to get results. The results should be comparable and
transferable between the tools.

Automatic check on Java level

The above shown situation can come also from a Java formulated design. It should be possible to
check such constructs statically on Java level, yet not clarified. The check should test whether at
least one signal is in AND constellation for the whole condition, and this signal should have the less
constrain for delay.

https://vishia.org/smlk/html/SmlkTimeSignals/SmlkTimeSignals.html

page 14 3.3. Data types in Java for Fpga design in VHDL

3.3. Data types in Java for Fpga design in VHDL

VHDL distinguishes between the BIT type which has two states '1' and '0' (similar as boolean in
Java) and adequate also for the STD_LOGIC type which may have also only the both values '1' and
'0' if no more is used on the one hand …

And on the other hand VHDL knows a boolean type which is strongly used in IF THEN statements.

In VHDL there is no automatic conversion between both.

The typical boolean operators AND, OR are valid for all three, the boolean type and also for BIT and
STD_LOGIC but of course with different results. The result follows the inputs, a mix is not possible.
This may be one of the "safety" of the VHDL language, strongly distinguish, but it can be seen also
as difficult and confusing.

In Java the situation is clarified with a boolean type which is also strongly and safe:

boolean in Java has two states, true and false.

Better than in C language the true representation is strongly defined.

More strongly as in C and C++ language a if statement needs a boolean expression. All other is
faulty.

For the Java representation of a Fpga design with view to VHDL the following is defined:

Without a specific annotatio a boolean variable represents a SIGNAL of BIT type. The values true
and false are associated to ‘1’ and ‘0’. Negative logic is not supported as language feature. It is
a feature of the user’s semantic.

A BIT_VECTOR is represented by a int or long value (with up to 64 bit). This is better to test in Java
as a boolean vector, because BIT VECTOR is often used as register values, also for shift and
compare operations.

To access one bit of such an vector, there is a special access operation Fpga.getBit(vector, 7)
where 7 is a bit number. The result of this operation in Java is boolean which is a BIT type.

Exact the same can be done with a STD_LOGIC_VECTOR, also represented in Java with int or long,
distinguished only by the annotation @Fpga.BITVECTOR or @Fpga.STDVECTOR

Yet numerical values are not supported, done in the (near) future. The types short and int for 16
and 32 bit bit width without additional annotations should be used for 16- and 32 bit with algorithm
(long also for 64 bit).

3.3.1. boolean expression and SIGNAL types with view to VHDL page 15

3.3.1. boolean expression and SIGNAL types with view to VHDL

In VHDL, if you have a boolean operation with a BIT or also STD_LOGIC type, you can write:

result <= (a AND NOT b) OR c;

If you do the same for an IF construct you must write:

IF (a='1' AND b='0') OR c='1' THEN

It means the operands should fistly converted to a boolean one. But it is also possible to write:

IF ((a AND NOT b) OR c) ='1' THEN

Here the expression is calculated as bit and then converted to boolean as last action for the IF
usage.

But if you have a mix of BIT and STD_LOGIC it is not easy to write. If b1 .. b3 are BIT types and s1 .. s3
are STD_LOGIC you can write

b3 <= b1 AND b2;
s3 <= s1 AND s3;

But you cannot write a mix of both.

s3 = a1 AND b1;

For that it is necessary to write:

IF(a1='1' AND b1='1') THEN s3 = '1'; ELSE s3 = '0'; END IF;

Now the check is done on compilation level as boolean and the results are set. For the routing
process and the logic in FPGA it is exactly the same if there are no tristate or wired lines or such
one, or better: If the STD_LOGIC signals have in any case only the values '0' and '1'. It is a property
of the language VHDL, which regards that a STD_LOGIC can or may have also other values then '1'
and '0' as possibility. The given line does not give an information about that.

Hence it is a little bit complicated for the code generation. The Java2VHDL translator regards that
stuff by using converting operations on VHDL side so far as possible.

3.3.2. Use cases of STD_LOGIC definitions

The STD_LOGIC was introduced in VHDL firstly to support timing simulation with the values 'U', 'X'
etc. That is unrelated for the Java2Vhdl, because in Java only the functional simulation is done
which does not need 'U' and 'X', a maybe timing simulation is done only in pure VHDL with the
specific tools. But it may be important: If Simulation should be done with VHDL then all SIGNALs
should be defined as STD_LOGIC and not as BIT.

Secondly, also important for Java2Vhdl, the Tristate and a wired or or wired and (pullup, pulldown
lines) in the FPGA hardware can only defined with STD_LOGIC. For that the type
@Fpga.STDLOGIC char mySignal;

supports definition of a data type with the 9 possible states. They are given as characters for the
char variable and adequate used for Java simulation.

The other possibility is to define
@Fpga.STDLOGIC boolean mySignal;

In this case this variable is translated to STD_LOGIC, but only the two states '1' and '0' are
supported.

page 16 3.4. Modularity, with Object Oriented Approach

3.4. Modularity, with Object Oriented Approach

Of course, Java is an Object Oriented Language. It is important for ordinary software
programming. The important common features for Object Orientation and their relations to
hardware description approaches are shown in the following sub chapter.

3.4.1. Modularity in classic VHDL

VHDL was developed in a time as Object Orientation was not familiar. And of course, is Object
Orientation proper for hardware approaches? Not from the eyes of the 1980th. But from the eyes
of hardware test approaches and translation possibilities of the 2020th!

 ● The modularity of VHDL is classic, it is a dataflow approach:

 ● Define an interface to a module, this is in the module the ENTITY PORT definition part.

T ● his definition part should be repeated on usage as COMPONENT definition with the same content
(a disadvantage, In C header files for that are used).

 ● On usage secondly in a PORT MAP signals should be connected. The connection of two
modules needs extra signals.

For that the writing and
maintain effort is high. This is
especially a problem on
refactoring. The importance
of refactoring in modern
software technology is some
more higher as in the
1980th, related with the
topics agile program
development, complexity of
solutions.

The image right side is only
an illustration. It shows how
two cards with simple plugs can be connected in a simple way. You are responsible to all by
yourself, and you can do what ever you want, in this example have a resistor in the line. This is
similar as wiring of modules in VHDL. You need an effort, but you can insert your own logic on
module plugging level between the modules.

For hardware description in Java a similar approach is possible using an In and Out inner class for
the input and output signals. This is necessary if one module should translated as one module to
VHDL.

3.4.2. ObjectOriented approaches and their mapping for VHDL page 17

3.4.2. ObjectOriented approaches and their mapping for VHDL

 ● OO: Some related data are combined in a class.

 ● VHDL: This is also familiar in VHDL, using a TYPE RECORD and its instances. Secondly the
classic modularity with one VHDL file per module fullfils this approach.

 ● OO: Some operations are related to the data, the operations which works with the data.

 ● VHDL: it is possible to build RECORDs, and PROCESSes, which touches only data of exactly one
record instance. It means the RECORD definitions are oriented to the PROCESS definitions. The
PROCESS is the operation or "method" related to the data. That is possible, not necessary in
VHDL but may be seen as recommended. But other than in Object Oriented writing style the
PROCESS can be related only to one RECORD instance and not to the TYPE RECORD, to the type as in
Object Orientation. For the Java2VHDL translator the operation is defined type related of
course (because of other reason in the constructor). The translator generates the PROCESSes
from that constructor code, but instance related. In the normal software Object Orientation the
instance relation is made on run time via the arguments of the method (in particular the
instance pointer this, but also via other referenced instances as arguments). The Java2Vhdl
translator resolves this arguments and builds PROCESSes for each instance as result of
translation. It can be seen that the realization of the VHDL design is associated with a
runtime, while the description in Java is the source for compilation.

 ● OO: Encapsulation of data. Data can be designated as private or protected. In both cases the
data cannot be accessed from any other module, only from the own one ore derived ones in
case of protected. The package private designation in Java (without public keyword) is a
furthermore possibility similar to the friend designation in C++: Some modules can be
associated to access there data one together, but the access is not possible from modules
outside of this group.

This feature is not firstly for protection, is supports a proper modularity without too much data
dependencies.

 ● VHDL: In a module in an own VHDL file the data are also encapsulated. But the Java2VHDL
translator supports also a flattened style with one VHDL file for some modules and some TYPE
RECORD inside. But because of encapsulation of the data in Java, the access to the records are
also sorted.

 ● OO: aggregated modules: Any module can have references to other modules. In UML
(Unified Modelling Language) this references are designated as composition (own sub
module), aggregation (hard referenced other module, not changable) and association
(changeable). But the access to properties of the other module are organized. Only public or
package private members can be accessed, see topic above. It is able to clarify whether an
access can be done only via access operaions ("getter") or also to public data. The data can
be final especially in Java to forbid writing, changing of the data in another module. This is an
essential idea to decrease to much functional dependencies between modules.

 ● VHDL: In the classic VHDL only the data flow via the Interface data (ENTITY PORT) is possible.
This is not an aggregation concept, it is a dataflow concept.

 ● But if a TYPE RECORD is seen as a module, in a flattened design (one file for more modules),
then the access to the data to other modules is immediately possible. Last not least, for the
deployed design in the FPGA it is the same as using more as one VHDL file with ports. But
from the view point of the VHDL source it is maybe more obviosly and more simple to read
what`s happen. This is one of the basic idea of the flattened design of the generated VHDL
file.
From view point of the FPGA content description in Java, Aggregations are used, see chapter
3.2.3 More possibilities with Java2VHDL: References (aggregations) in Object Orientation

page 18 3.4. Modularity, with Object Oriented Approach

kind. Via the aggregations either public data can be accessed immediately, or the better
approach is using the interface concept, see 3.4.4. Interface technology in Java for VHDL
page 23. This is possible via modules in one flattened design.

 ● OO: There is the possibility to use derived types from an abstract type: The thinking should
not be: Have any type, and derive it. The better thinking way is: Have some different types,
how to find common properties and their embodiment in an abstract type of all these different
types. It means the derivation is the secons approach, the abstraction is the first one. This is
done because dealing with common properties (abstraction) is a good idea.

 ● OO: Related to Java programming languate, firstly the interface concept is one of the
abstraction: Defining of a comman access possibility. The interface is implemented then in
any type (class).

 ● OO: This feature of Object Orientation is very important for flexibility and testing.

A module can be connected to different similar but not necessary equal other types
(aggregation in UML).

For testing an aggregated module can be replaced by a stub or mock which fullfils the
interface for test approaches, to execute module-related (unit) tests.

 ● VHDL: This is an interesting topic. Also in VHDL a module / unit test may be seen as
important. The test can be done in a reduced real desing in an FPGA, and also on software
level. Exactly this topic is realized in the Java2Vhdl translator. See chapter 3.4.4. Interface
technology in Java for VHDL page 23.

3.4.3. References (aggregations) in Object Orientation kind page 19

3.4.3. References (aggregations) in Object Orientation kind

The following example code snippet comes from the example project in the linked zip file on start
of this document:

The modules in Java can be implemented in a flattend form in VHDL. Then each inner class from
one Java file (module) is one TYPE RECORD definition in VHDL. The top level VHDL file or also a
module can have some such RECORD TYPE definitions.

Example start of an inner class in a module MyModule.java:

Java: inner class for a PROCESS in VHDL
//fpga/exmpl/modules/ClockDivider.java
 /**Inner PROCESS class builds a TYPEDEF RECORD in VHDL and a PROCESS for each in...
 * Note: Need public because here the interface technology is not used (negative...
 * Compare with {@link Reset.Q}
 */
 @Fpga.VHDL_PROCESS public static final class Q{

 @Fpga.STDVECTOR(4) final int ct;

 /**This is the variable of the record accessed from outside.
 * Note: Need public because here the interface technology is not used (negati...
 * Compare with {@link Reset.Q#res}
 */
 public final boolean ce;

 /**Time of the latest set operation of any of the variables. */
 public int time;

Builds the record in VHDL:

TYPE ClockDivider_Q_REC IS RECORD
 ct : STD_LOGIC_VECTOR(3 DOWNTO 0);
 ce : BIT;
END RECORD ClockDivider_Q_REC;

The RECORD is instantiated, here with one instance, but also more as one instances are possible:

SIGNAL ce_Q : ClockDivider_Q_REC;

In VHDL from inside any PROCESS a variable of another module (RECORD instance) can be
accessed, because of the flattened form with RECORDS.

ct_Q_PRC: PROCESS (clk)
BEGIN IF(clk'event AND clK='1') THEN

 IF ce_Q.ce='1' THEN

That is possible because of the flattened property. This is simple also for the routing process for
FPGA tools. The signal ce in the record instance ce_Q is immediately accessed. But:

The idea working flattened is bad for the real sources. It means that is not an approach for the
Java sources. But instead, the Java sources can work with aggregations. The adequate line in
Java for the process of the other module looks like:

Java: constructor for a PROCESS in VHDL usning ce
//fpga/exmpl/modules/BlinkingLedCt.java
 @Fpga.VHDL_PROCESS Q(int time, Q z, Ref ref, Modules modules) {
 Fpga.checkTime(time, ref.clkDiv.q.time, 1); // for the ce signal, constrain...
 if(modules.ct_clkDiv.q.ce) {

 ● In Java the access is not done immediately to the variable in the other class. Instead a
reference ref.clkDiv is used.

 ● Whereby ref is a module specific instance which holds all references, clkDiv is the reference

page 20 3.4. Modularity, with Object Oriented Approach

to the other module.

 ● The name after ref.clkDiv is not related to Vhdl. It is a local name in the module class in Java,
not related to the really used instance.

 ● This is due to modularity. A module should not know which concrete instance of another
module is used. This is not to be clarified in the module. It must be clarified in the higher-level
programming which uses the modules.

How it is related: Any module can contain a Ref class with a Ref ref instance, here:

Java: Reference usage
//fpga/exmpl/modules/BlinkingLedCt.java
 private static class Ref {

 /**Common module for save creation of a reset signal. */
 final Reset_ifc reset;

 final BlinkingLedCfg_ifc cfg;

 /**Specific module for clock pre-division. */
 final ClockDivider clkDiv;

 Ref(Reset_ifc reset, BlinkingLedCfg_ifc cfg, ClockDivider clkDiv) {
 this.reset = reset;
 this.cfg = cfg;
 this.clkDiv = clkDiv;
 }
 }

 private Ref ref;

That are aggregations in UML wording (Unified Modeling Language for Object Orientated software
technology).

As you see the name of the referenced module clkDiv is a private name, not the name of an
existing instance in the parent module. This is per se unknown, not determined which modules and
also which type of modules are used.

The constructor of the Ref have to be called in the constructor of the module, because ref is final:

Java: constructor and init operation for the Ref class
//fpga/exmpl/modules/BlinkingLedCt.java
 /**Module constructor with public access to instantiate.
 *

 * Note: The arguments should have the exact same name and type as in the {@link...
 *
 * @param reset module provide the reset signal on power on and as input
 * @param clkDiv module provide a clock enable signal: {@link ClockDivider.Q#ce}
 */
 public BlinkingLedCt (Reset_ifc reset, BlinkingLedCfg_ifc cfg, ClockDivider clk...
 this.ref = new Ref(reset, cfg, clkDiv);
 this.modules = new Modules(this.ref, this);
 }

 /**Non parameterized constructor if the aggregations are not existing yet. Use {...
 * for aggregation. */
 public BlinkingLedCt () {}
 /**The init operation should be used instead the parameterized constructor with ...
 * The modules should be known each other. Then only one module can be instantia...
 * The other module can only be instantiated firstly without aggregations, then ...
 *

 * Note: The arguments should have the exact same name and type as in the {@link...
 * @param reset aggregation to the reset module.
 * @param cfg aggregation to the configuration
 * @param clkDiv aggregation to the clock divider.

3.4.3. References (aggregations) in Object Orientation kind page 21

 */
 public void init (Reset_ifc reset, BlinkingLedCfg_ifc cfg, ClockDivider clkDiv) {
 this.ref = new Ref(reset, cfg, clkDiv);
 this.modules = new Modules(this.ref, this);
 }

Here it is important that the name of the arguments in the constructor is the same as the name of
the aggregation reference in the Ref class. That is not a problem and also a good style. It is
necessary for the translation to VHDL.

Now, in the top level in Java all modules should be instantiated. The Java-toplevel decides which
modules are used. For that there is a Modules inner class:

Java: Module class defines the used modules with their relations
//fpga/exmpl/modules/BlinkingLedCt.java
 /**The modules which are part of this Fpga for test. */
 public class Modules {

 /**The i/o pins of the top level FPGA should have exact this name ioPins. */
 public BlinkingLed_FpgaInOutput ioPins = new BlinkingLed_FpgaInOutput();

 /**Build a reset signal high active for reset. Initial or also with the reset_...
 * This module is immediately connected to one of the inputFpga pins
 * via specific interface, see constructor argument type.
 */
 public final Reset res = new Reset(this.ioPins.reset_Inpin);

 public final Test_Combinatoric_BlinkingLed vhdl_Combinatoric = new Test_Combin...

 public final BlinkingLedCt ct = new BlinkingLedCt(this.res, BlinkingLed_Fpga.t...

 public final ClockDivider ce = new ClockDivider(this.res, this.ct);

 Modules () {
 //aggregate the module afterwards
 this.ct.init(this.res, BlinkingLed_Fpga.this.blinkingLedCfg, this.ce); //...
 }
 }

 public final Modules modules;

Here three modules are defined which are used in the top level of the FPGA. In the constructor of
the modules the aggregations to the other modules are defined. Note that also a module.init(…)
can be used beside the constructor. This is necessary if circular dependencies are needed. For the
Java2VHDL translation both can be used, arguments of the constructor and arguments in the
associated init(…), not shown here.

The name of the modules (the composite reference name in Java) build the name of the RECORD
instances in VHDL:

SIGNAL ce_Q : ClockDivider_Q_REC;
SIGNAL ct_Q : BlinkingLedCt_Q_REC;
SIGNAL res_Q : Reset_Q_REC;

On translation from Java to VHDL an index (TreeMap in Java) is built for each module which
associates the intern name of a reference to a module with the real used module. This index is
internally used for translation, but also reported in the report file (option -rep:path/to/file.txt)

== Module: ct
 localName | accessed module {@link J2Vhdl_ModuleInstance#idxAggregat...
--------------------+----------------
 cfg | BlinkingLed_Fpga : BlinkingLed_Fpga
 clkDiv | ce : ClockDivider
 reset | res : Reset
--------------------+----------------

page 22 3.4. Modularity, with Object Oriented Approach

Now, while generating the PROCESS for the module ct, this association index is used to assign the
clkDiv in Java with ce as name of the RECORD instance in VHDL.

How is this index built:

 ● The name of the instance in Java given as actual argument of the constructor respectively the
init(…) operation BlinkingLedCt as this.ce. this. is only for Java internals, ce is used.

 ● The name of the formal argument of the constructor or init(…) of BlinkingLedCt is clkDiv. It is
also gathered.

 ● This both names are stored in the index shown above.

 ● The name of the actual argument of the Ref constructor and also the name of the reference
itself should be the same: clkDiv. This is necessary as style guide. It should not be a problem.
Test and translation of this stuff may be also possible, but a non necessary effort.

So the Object orientated writing style in Java is translated to a flattened immediately access to the
correct SIGNAL (usual a Flipflop, a register etc.).

3.4.4. Interface technology in Java for VHDL page 23

3.4.4. Interface technology in Java for VHDL

The last chapter has shown using Object Orientation with aggregations and their association to
instances. That is necessary for flexibility in module usage (which combination) and also for the
test of modules

There is one more approach: using interface technology.

Basics of interface technology

In the chapter above it is able to associate, which module is used. But the access inside the
module is inflexible. The variable name of the module is immediately used, in the example q.ce.

Two things should be free to do:

 ● Changing of internal names in a module for further development. Using modules should not
be refactored. That is also the basic idea of private encapsulation in the Object Orientation.

 ● Using another module should be possible with similar properties for using but another internal
design This idea is the abstraction and inheritance in Object Orientation. It is like in daily life.
You need a car to drive. Which car is not important. All cars are basically similar, there are
exactly equal in the required properties.

 ● The last point is also for test: You can replace a module with a test bed emulation of the
original module to make an independent module or unit test. The test bed replacement has
another inner structure.

Look to another part of the example:

Java: interface usage
//fpga/exmpl/modules/BlinkingLedCt.java
 if(ref.reset.res(time, 20)) { // interface access to assigned her...
 this.ct = ref.cfg.time_BlinkingLed();

This is a snippet from the BlinkingLedCt PROCESS in Java: A reset information is requested. If
reset is given, then the counter ct is set to its reload value.

But it is not designated here from where reset is coming and how it is built, and also from where
the reload value is coming and how it is built. This should be clarified outside of the module. The
module only needs connection for it.

The translated VHDL design looks like:

VHDL: generated code of interface usage

 IF (res_Q.res)='1' THEN
 ct_Q.ct <= TO_STDLOGICVECTOR(BlinkingLed_Fpga_time_BlinkingLed);

Here the relations to the reset signal and the reload value is full clarified: A signal from another
RECORD instance (another module) is used for reset, and the reload value is defined as constant
in the VHDL code above:

VHDL: constant definition due to interface operations

CONSTANT BlinkingLed_Fpga_onDuration_BlinkingLed : INTEGER := 10;
CONSTANT BlinkingLed_Fpga_time_BlinkingLed : BIT_VECTOR(7 DOWNTO 0) := x"64";

But in another usage configuration of the same module, without change of the Java code of the
module, the reload value can for example come from another Signal vector as for example

VHDL: other result of interface usage

 ct_Q.ct <= otherRecord.reloadVal;

page 24 3.4. Modularity, with Object Oriented Approach

References with interface type

Explained from hardware view: A simple signal or variable in Java with a dedicated type, BIT or
STD_LOGIC_VECTOR or such in VHDL or boolean or int in Java is like a cable with a standard
plug, which’s properties are general defined, not specialized. Whereas an interface is a cable with
a plug of a certain design which can only be plugged into the corresponding counterpart. The
conditions on the interface are well defined. But it is not defined how the implementing device
behind the plug works.

The invocation of the interface relation uses the referenced modules ref.reset and ref.cfg for this
both values from the chapter above.

Look on the definition of all references for input values from outside of the BlinkingLedCt module:

Java: Reference class definition
//fpga/exmpl/modules/BlinkingLedCt.java
 private static class Ref {

 /**Common module for save creation of a reset signal. */
 final Reset_ifc reset;

 final BlinkingLedCfg_ifc cfg;

 /**Specific module for clock pre-division. */
 final ClockDivider clkDiv;

 Ref(Reset_ifc reset, BlinkingLedCfg_ifc cfg, ClockDivider clkDiv) {
 this.reset = reset;
 this.cfg = cfg;
 this.clkDiv = clkDiv;
 }
 }

 private Ref ref;

As you see, the type of the ref.reset is Reset_ifc, as also the type of ref.cfg is BlinkingLedCfg_ifc.
Look firstly to the defintion of the Reset_ifc:

Java: Definition of Reset_ifc:
//fpga/exmpl/stdmodules/Reset_ifc.java
package org.vishia.fpga.stdmodules;

public interface Reset_ifc {

 /**Returns true for reset. false for normal operation.
 * @param time current time for the access
 * @param max check whether the time of the accessed signal was latest set to (t...
 * @return true then reset active, false: normal operation.
 */
 public boolean res (int time, int max);

}

Using of interfaces is very proven in Java (as also another Object Orientated Languages), and it is
not so complex to translate it to VHDL, if some sensible simple style guides are additional
regarded.

It means, to get an information about the reset state as boolean value in Java or BIT in VHDL, the
reset() operation is called in the implementing module. That is the formal form of the plug. How this
function is implemented - depends on the plugged module.

The association for ref.reset is set on construction. For this example the init(…) operation is
responsible to plug:

Java: Reference class definition

3.4.4. Interface technology in Java for VHDL page 25

//fpga/exmpl/modules/BlinkingLedCt.java
 /**The init operation should be used instead the parameterized constructor with ...
 * The modules should be known each other. Then only one module can be instantia...
 * The other module can only be instantiated firstly without aggregations, then ...
 *

 * Note: The arguments should have the exact same name and type as in the {@link...
 * @param reset aggregation to the reset module.
 * @param cfg aggregation to the configuration
 * @param clkDiv aggregation to the clock divider.
 */
 public void init (Reset_ifc reset, BlinkingLedCfg_ifc cfg, ClockDivider clkDiv) {
 this.ref = new Ref(reset, cfg, clkDiv);
 this.modules = new Modules(this.ref, this);
 }

This operation creates the Ref instance and sets the references with the outside given reference to
the implementor, the supplier for this signal with the interface type. Alternatively this can be also
done also with the constructor of the module.

The value for the supplier of the reset signal in form of the Reset_ifc comes from another module.
The connection is done in the Moduls class on top level:

Java: Module definition and relations
//fpga/exmpl/modules/BlinkingLedCt.java
 /**The modules which are part of this Fpga for test. */
 public class Modules {

 /**The i/o pins of the top level FPGA should have exact this name ioPins. */
 public BlinkingLed_FpgaInOutput ioPins = new BlinkingLed_FpgaInOutput();

 /**Build a reset signal high active for reset. Initial or also with the reset_...
 * This module is immediately connected to one of the inputFpga pins
 * via specific interface, see constructor argument type.
 */
 public final Reset res = new Reset(this.ioPins.reset_Inpin);

 public final Test_Combinatoric_BlinkingLed vhdl_Combinatoric = new Test_Combin...

 public final BlinkingLedCt ct = new BlinkingLedCt(this.res, BlinkingLed_Fpga.t...

 public final ClockDivider ce = new ClockDivider(this.res, this.ct);

 Modules () {
 //aggregate the module afterwards
 this.ct.init(this.res, BlinkingLed_Fpga.this.blinkingLedCfg, this.ce); //...
 }
 }

 public final Modules modules;

Here you see the invocation of the init(…) operation with the first argument `this.res. It is the
reference to the Reset module which supplies the interface. Adequate it is done for the others. The
implementor of the BlinkingLedCfg_ifc is here assembled in the environment class denoted by
BlinkingLed_Fpga.this and their in blinkingLedCfg, see following chapter 3.2.4.5 Interface access
instances for stubs (replacement for non existing module outputs). You see also here that the
references are fulfilled for example for the Reset module by construction, here with reference to the
pin of the Input interface on the FPGA.

Implementation of an Interface from the whole module

If you have a simple module, as here the Reset which has only one task:
Deliver the reset signal, this module can/should immediately implement this
interface. The image right shows a module, it has only one task, supply

page 26 3.4. Modularity, with Object Oriented Approach

voltage 5 V, one interface, an USB plug, no more.

The Reset module in Java implements the interface on module level:

Java: Implementation of Reset.reset():
//fpga/exmpl/stdmodules/Reset.java
public class Reset implements FpgaModule_ifc, Reset_ifc {

 @Override public boolean res (int time, int max) { return this.q.res; }

It’s very simple: It accesses the variable res in its own inner class q which is the PROCESS class
for the reset functionality. This is the detail of this Reset module.

The Java2Vhdl translator evaluates this term in the context of this module which is given as
reference. Hence the result is the already above shown VHDL code:

VHDL: generated code of interface usage

 IF (res_Q.res)='1' THEN
 ct_Q.ct <= TO_STDLOGICVECTOR(BlinkingLed_Fpga_time_BlinkingLed);

Generally, only the term of the return statement is evaluated. If the interface operation contains
more statements, it is usable for simulation on Java level. For the ordenary software execution of
interfaces concepts in Java as also other programming languages the interface operation can also
change data and do anywhich else. But this "full freedom to do whatever you want" is also
criticized in some software writing guidelines. Normally it is a good style to prevent or forbid
changes in another software module on only access operations. Changes should be done with
(also maybe interface-) operations which are named set…, do…, process… or exec…or such else.
For that things the processes in VHDL are responsible. It means execution routines cannot be
invoked in the Java context for VHDL hardware descriptions.

But the return expression can be more complex, for example can contain logical combinations,
access to bit ranges, comparison and all what is possible also in other expressions. This
expression is generated inside the accessing PROCESS. If the same interface operation is used
more as one time in different contexts, this operations are generated on any access. It is similar as
execution of the operation in the Java runtime. Also there any access executes the statements
again.

It means, the PROCESS of the module can prepare proper signals for simple access if it is
expectable that this signals are used more as one time. On the other hand the optimizer while
routing can accomplish the aggregation of multiple equal accesses. How these accesses are to be
designed is up to the Java description of the VHDL developers.

Now, any module can implement this Reset_ifc. It means for testing, or for another design, you can
use another module for the reset signal without change of the inner structure of the using module.
The Java2Vhdl translator gets the correct access.

Interface agents or access instances

If a module has more interface connections, especially
connections of the same type more as one, then it is not
optimal or not possible for the same interface type to
implement the interface with the module as a whole. For
that Java offers an interesting possibility: Implementing the
interface in instances of anonymous inner classes. The
inner class has only the task to implement the interface
with the possibility to access to the environment (outer)
class which is the module. For that it can be seen as agent which is responsible to access to inner
details of the module from outside, without the necessity to regard this access in the module itself.
On the other hand it can be designated as access point.

Java: Example for interface access or agent

3.4.4. Interface technology in Java for VHDL page 27

//fpga/exmplBlinkingLed/fpgatop/BlinkingLed_FpgaInOutput
package org.vishia.fpga.exmplBlinkingLed.fpgatop;

import org.vishia.fpga.Fpga;
import org.vishia.fpga.stdmodules.Reset_Inpin_ifc;

public class BlinkingLed_FpgaInOutput {
.....
 /**Get the reset pin as referenced interface access from a module.
 * Using the {@link org.vishia.fpga.stdmodules.Reset} may be seen as recommended...
 */
 @Fpga.IfcAccess public Reset_Inpin_ifc reset_Inpin = new Reset_Inpin_ifc () {
 @Override public boolean reset_Pin() { return BlinkingLed_FpgaInOutput.this.in...
 };

Such an anonymous class instance or agent is shown here for the access to the reset pin itself.
The pin is located in a static class Input definition in this module with a final Input input = new
Input() instance. This is used to generate the PORT definition in VHDL, but this is not the point of
interest here.

For the port definition, especially, there may be a lot of pins. A flexibility is necessary because the
same FPGA functionality may be necessary to implement in different environments, different card
types etc. For that the interface access to the port pins is a very good idea and reduces adaption
effort and error possibilities because of pin confusion.

Hence, the port definition is associated to an own module (which can be replaced for different
applications without replacing and adaption of other modules). This module contains:
public class MyPortsVersionXY_FPGA {
 public static class Input {
 //.... input pins
 }

 public static class Output {
 //.... output pins
 }

 public final Input input = new Input(); //instantiation
 public final Output output = new Output();

 //some access operations:
 @Fpga.IfcAccess public Type_Inpin_ifc access_Inpin = new Type_Inpin_ifc () {
 @Override public boolean access_Pin() { }
 };

Now this module can be connected with dedicated access instances to any module which needs
an input pin. More as that: A module which needs primary an input pin can also be connected not
immediately to the pin, but to another module may be with a filter functionality. This other module
should only offer also such an interface access agent with the same interface type.

Of course this Port module is only an example. The interface access agents can be used anywhere
for more complex applications.

Interface access instances for stubs (replacement for non existing module outputs)

Especially for test, but also for variants of a FPGA design sometimes a functionality is not
necessary. Without adaption of the module, the inputs can be connected to constant signals driving
'0' or '1'. The place and route will be remove this unnecessary parts. But on source level an
adaption should not be necessary.

Adequate can be done if some constant values are necessary. The constant values should not be
set in a module itself to preserve flexibility, it should be delivered from outside. It’s the same story:
a module should not be modified and adapted for a specific use, but the functionality should be
defined externally with appropriate connections.

page 28 3.4. Modularity, with Object Oriented Approach

For the Blinking Led example this is done with timing parameters:

Java: interface usage
//fpga/exmpl/modules/BlinkingLedCt.java
 if(ref.reset.res(time, 20)) { // interface access to assigned her...
 this.ct = ref.cfg.time_BlinkingLed();

The request is adequate, a value should be accesses. It is not first intendet that this is a constant
value. It can be also a signal which contains this reload value as dynamic information.

Especially for tests sometimes signals are terminated by fix values, if this functionality is not in
focus yet. The signals should be fulfilled, of course, but inputs may be always false or '0' for this
test condition or for more simple usage of a module. The last hint is also important: A module can
contain more functionality as necessary for the amount of usages. If inputs are terminated with
constants and outputs are not used, then the routing process will remove this unnecessary parts.
The sources can contain it, without disadvantages. It means also that a module should not be
prepared or adapted for specific usage situations. It can be uses "as is", and the outer signals and
connections determine which is really implemented in the FPGA.

For that all reasons a second use cases and translation goal for interface access is supported by
the Java2Vhdl converter: If the return expression delivers a constant value, then a CONSTANT
definition in VHDL is created and used.

Follow the example: The interface to access the time_BlinkingLed() is implemented here in the
main or top level file also with an access instance:

Java: interface implementation for a constant
//fpga/exmpl/modules/Fpga_BlinkingLed.java

 /**Provides the used possibility for configuration values.
 */
 @Fpga.IfcAccess BlinkingLedCfg_ifc blinkingLedCfg = new BlinkingLedCfg_ifc () {

 @Override @Fpga.BITVECTOR(8) public int time_BlinkingLed() {
 return 0x64;
 }

 @Override public int onDuration_BlinkingLed() {
 return 10;
 }

 @Override
 public int time() { return 0; } // set from beginning

 };

The essence is: The return … expression contains only one term, it is a constant. If this situation is
detected, this constant value is generated in VHDL with the name of the module and the name of
interface operation, it`s unique. The result is (already shown above):

VHDL: constant definition due to interface operations

CONSTANT BlinkingLed_Fpga_onDuration_BlinkingLed : INTEGER := 10;
CONSTANT BlinkingLed_Fpga_time_BlinkingLed : BIT_VECTOR(7 DOWNTO 0) := x"64";

The advantage of building a constant element instead the immediately constant value is: It is
obvious in VHDL. Elsewhere only the constant value will be written there as evaluation of the
expression, and the back tracking to the Java code is difficult.

If for instance inputs are terminated by a constant to prevent usage, the generated VHDL code
contains for instance:

VHDL: constants for input termination example

CONSTANT Toplevel_Fpga_inputX : BIT := '0';

3.4.4. Interface technology in Java for VHDL page 29

PROCESS ...
 IF Toplevel_Fpga_inputX = '1' THEN
 ...

In VHDL you see that the input of the module is used, but the expression is never true. Hence, the
router removes this part, proper for the use case.

The idea to implement such termination interfaces on the top level comes from the idea, that the
top level, or the whole design decides about usages of details of some modules. Another module
as stub is not necessary. It simplifies the design. But of course a specific module can also be used
for that.

How does the interface technology works for Java2Vhdl

As you have seen in the chapters above: The references and interface operations are full resolved
to simple accesses to the internals of another module. Here a question can be asked: Why is it so
complicated to run the programs with virtual operations? The interface usage in Java is the same
as virtual or overridden operations with late linkage in C++.

The answer is: If references are not full clarified from beginning, the mechanism of the virtual table
is necessary. This is the common approach for software execution. But if references are clarified
from beginning in the construction phase, and they are never changed, then the execution level
can use the simple immediate access. It may be also in the same kind for a Java just-in-time (JIT)
compiler: This is the translation from Java byte code to machine code on loading a class. After
loading and preparing the immediate machine code is executed. Thats why Java execution needs
more startup time, but then it runs fast. If references are organized as final in the constructor, the
JIT can optimize it. Whereas, C++ has not such an JIT compiler, and should use the virtual
operation call anyway.

Now, for the FPGA usage, the references are also clarified from beginning, with the adequate
specific constructs also using the init(…). Hence it can be resolved on translation time.

There are two things to considerate: The refernced module and the interface operation.

 ● On translation of each module the interface operations (only in the first level classes of each
file, not in inner classes) are gathered. The return statement is searched and evaluated.

 ● Either it is a simple constant, then the constant is stored in the idxConstDef:

 ● All constant definitions: J2Vhdl_FpgaData.html#idxConstDef

 ● and the const definition is stored in

 ● constant definition of an interface operation: J2Vhdl_ModuleType.IfcConstExpr.html#constVal.
Or if it is not a simple constant the expression is stored in

 ● expression of an interface operation: J2Vhdl_ModuleType.IfcConstExpr.html#expr

Both alternatives are then stored module-type-related in

interface operation per module type: J2Vhdl_ModuleType.html#idxIfcExpr

On translation this table is reported in the -rep:reportfile.txt for this example as:

== J2Vhdl_ModuleType: Reset
 ifcOperation() | access {@link J2Vhdl_ModuleType#idxIfcOperation}
--------------------+----------------
 reset() | this.q..??refres @;
--------------------+----------------

If an interface operation is detected as part of an expression, then the reference is dissolved,
detecting the type of the reference, and the interface operation is searched (binary search) in that
module type related index.

Then either the constant definition is immediately used, or the given expression is evaluated as

page 30 3.4. Modularity, with Object Oriented Approach

any other expression too, whereby the module context is switched.

3.4.5. Overview modularity

The next image should show the variants in a common way (unrelated to the example), also with
public immediately access in the modularity:

 ● The Module_A_In in this image is an inner In class adequate to the VHDL approach using
PORT. It is possible.

 ● Left side an immediately access to a inner variable in Java is shown. The variable should be
public. The disadvantage for that is, that the white Module_A should know the defintiion of
Module_X. That is possible and also familiar in Java. It is bad for module test, because on
testing also an instance of the ModuleX should be present in the test environment, exact this
module or a replacement but with the same package path, which is terrible for source
maintaining (version management).

 ● But also for that immediately usage the inner aggregation refX is translated to the ref1 on
usage. It means the type should be known, but the instance is determined outside. This is
important if more as one instance for one type is existing.

 ● Right side the interface usage is shown. The interface operation should have the same name
as the accessed variable. That is not necessary from the view point of Java. It is necessary
for the Java2Vhdl translation. But it is possible.

 ● You can connect different implementation modules also on FPGA level in VHDL. It means the
variable stateY can exist in different records types. Only the name is determined.

 ● Now the advantage for testing is shown. That is only done in Java, not on VHDL level. That’s
why the test implementation of the interface_K can use any implementation, should not
access exact one variable.

 ● Note that also for the module implementation for Vhdl translation the access operation here
for stateY can contain more as the simple access to the variable, for example log
informations, adaption, a debug break point. That is all possible on Java level, not translated
to VHDL. For VHDL anytime the simple access to the record signal with the same name as
the access operation is translated.

3.5. Including existing VHDL files page 31

3.5. Including existing VHDL files

There are two reasons to include a given VHDL file in the generated sources:

 a) Existing reused modules

 b) Often the tools for FPGA design have features to generate VHDL files for specific features, for
example for a RAM block.

VHDL is the standard for FPGA design (beside Verilog), hence VHDL is necessary to include.

For simulation on Java level, the functionality of the VHDL code should be emulated. For example
for a RAM module this should be simple. You may also only simulate only the basically functionality
to fulfill the interface to the module.

See handling in chapter 4.8.3. Included VHDL modules page 60 and 4.9 Java source for an
emulated VHDL module page 68

page 32 3.6. State machines, enum

3.6. State machines, enum

State machines are familiar both in software and in hardware. In software solutions often the so
named "Harel-Statecharts" are used. (https://en.wikipedia.org/wiki/David_Harel), which defines
nested and parallel states with history. That’s a part of the "Unified Modeling Language" (UML):
https://en.wikipedia.org/wiki/UML_state_machine, definition by omg.org: http://www.omg.org/spec/
UML/. For Software state machines often events are responsible to switch the states.

But all these practical things are not substantiated in the Java core definition. It is possible in Java,
but with specific classes.

Hardware state machines are often a little bit simpler. Especially there are not event driven, the
system clock switches because of conditions. But the idea of nesting and parallel states is and
should also possible and practicable. Also the idea of the event may be possible, presented by an
additional condition (the event bit). This means that thinking in terms of states should not
distinguish too much between software and hardware.

A basis for this is the enum definition for states and the enum type for the state variable. Exactly
this is implemented in the current version of Java2Vhdl.

3.6.1. State variable with 1-of-n decoding

A state variable is basically a numeric value. For 5 states you need 3 bits to code numbers
between 1 to 5 as presentation of the state. But another coding is better:

Use 5 bits if you have 5 states, the state variable is 1-to-5 decoded (one bit from 5 is set).
00000 invalid state
00001 state A
00010 state B
00100 state C
01000 state D
10000 state E

With this coding schema only one bit is need to detect a specific state, and this is a lesser effort in
routing, for the FPGA hardware resources. The number of FlipFlops in a FPGA are usual enough,
the scare resource is often the lines for routing and the look up tables (LUT) for combinatoric.

Only the quest of the invalid state (after reset) needs testing of all 5 bits, or more for more states.
In the current version of the Java2VHDL translator, the set of a state influences all state bits. Most
of them are set from 0 to 0, only the elapsed state bit is set from 1 to 0 and the new state bit is set
from 0 to 1. Maybe the router can improve this situation by optimizing. Setting all state bits clarifies
a possible mistake if more as one bit is set.

3.6.2. enum definition in Java page 33

3.6.2. enum definition in Java

Known from C/++ language, a enum is only a definition of an integer constant value by a symbol,
and the enum type assures only acceptance of these enum constant definitions. In Java the enum
definition is a little bit more powerful:

 ● Java creates an enum Object with some values as constant.

 ● The enum value in an enum variable is the reference to one of these enum constant objects.
This needs 8 byte for a pointer, in opposite to C/++ where for example 2 Bytes for an int16_t
enum base type are sufficient. But Java runs only on powerful processors, not an
disadvantage.

The first point offers usage of some more properties of the enum constant.

Java: enum definition
 /**States for xyz*/
 public enum MyState {
 Undef (0b00000, -1, '0'),
 /**State A */
 A (0b00001, 0, 'A'),
 B (0b00010, 1, 'B'),
 C (0b00100, 2, 'C'),
 D (0b01000, 3, 'D'),
 E (0b10000, 4, 'E'),
 ;
 public final int _val_;
 public final char show;
 final int bit;
 /**Constructor for the enum value
 * @param value The internal used Vhdl value
 * @param bit the bit number for VHDL translation, following the value
 * @param show character to show the state in println
 */
 MyState(int value, int bit, char show) {
 this._val_ = value; this.bit = bit; this.show = show;
 }
 }

This is a strikingly example. The state names A..E are of course any identifier, but you have a
namespace inside the enum definition (clashs are prevented, better than in C/++). The fields value
and bit are required. The field show is proper usable for output of test results, see some
programming examples. The state Undef is the undefined state after reset.

3.6.3. state variable as enum

The state variable in Java has this enum type. Concluding, Java assures only set with a valid state
value. For the VHDL conversion it should be a bit vector (not a STD_LOGIC_VECTOR, not
supported in the current version). A BIT_VECTOR is sufficient for usage.

Java: state variable definition inside a process class:
 @Fpga.BITVECTOR(5) final MyState state;

The number of bits should follow the enum definition, elsewhere mistakes in the generated VHDL
code are resulting.

page 34 3.6. State machines, enum

3.6.4. query state variables

The query is usal written as:

Java: state variable query:
 if(z.state == MyState.Undef) {
 //.....
 else if(z.state == MyState.A) {
 //.....
 else if(z.state == MyState.B && otherSignal) {
 //.....

As you see, the content of the state variable is compared to the given state constant value. Usage
of the identifier of the enum type definition is necessary in Java, it clarifies name clashing and
increases obviousness and readability. Usage of switch … case is possible and may be also
recommended in Java, but it is not yet supported in the Java2Vhdl translator. As given in the third
query line the query of the state can be also combined with the logic relation to other signals
(variables), which are the conditions for state usage. This is better possible in an if (… construct.

The Java2Vhdl translator detects a definition of a state constant with a bit value >=0, then only the
query of the state bit is produced in VHDL. For this example the result in VHDL is:

VHDL: state variable query:

 IF(module_Prc.state = Module_MyState_Undef) THEN
 --.....
 ELSE IF (module_Prc.state(0)='1') THEN
 --....
 ELSE IF (module_Prc.otherSignal AND module_Prc.state(1))='1' THEN
 --....

The first comparison of state used the state value 0b00000 which is not marked with a valid bit,
hence the Java2VHDL translator generates a full comparison of the state vector with the constant
value which is defined as

VHDL: state constant definition

CONSTANT Module_MyState_Undef : BIT_VECTOR(4 DOWNTO 0) := "00000";

The second comparison knows from the Java enum definition, bit 0 is associated, and generates
the simple access to this bit value. The third query combines the BIT access to the state
BIT_VECTOR bit with the BIT variable otherSignal as BIT-AND and converts outside of the
paranthesis to the necessary boolean value for the IF query.

Java: state variable query:
 myBitVariable = (z.state == MyState.C) & otherBitVariable;

This is a combinatoric from a state query and a boolean, it is translated very simple to:

VHDL: state variable query:

 module_Prc.myBitVariable <= module_Prc.state(2) AND module_Prc.otherBitVariable;

It means it is only a BIT logical combination.

3.6.5. set state variables page 35

3.6.5. set state variables

To switch the state only the new state should be set:

Java: state variable set:
 if(condition){
 this.state = MyState.C;

This is immediately translated to

VHDL: state variable query:

 IF condition THEN
 module.Prc.state <= Module_MyState_C;

It means all state bits are determined. The optimizer of the FPGA routing process may detect not
changed bits.

3.6.6. Nested and parallel states

As mentioned in the introduction, Harel-Statemachines have nested and/or parallel states.
Especially nested states helps get overview, it follows the practical requirements.

In Java level for VHDL any sub state in a state should have its own state variable. Entry in a
nested state needs set two state variables. Query of the composite state (the outer of nesting)
queries and set only the outer state variable, the inner state remains its value. This is helpful for
the entry to the "history state", to the given remained inner state back again.

These things are all able to do on user level. A translation between UML diagrams with given Harel
state charts to Java and then to VHDL may be nice and possible, but not presented here. See links
in german:

https://vishia.org/StMn/pdf/StatemProgr_de_2020-01-12.pdf

https://vishia.org/StMn/pdf/EventQueue_de_2020-02-20.pdf

page 36 3.7. Test in Java

3.7. Test in Java

The Test of the logic is a very important part.

General a test should be done in two categories:

 ● Test under exact defined conditions expecting dedicated results. This is important for two
situations:

 ● Test of features which are assumed in requirements.

 ● Repeated tests after changes to fast and automatic clarify, all is ok.

 ● Test under accidently conditions. This tests are important to study the behavior independent
of planned tests and exactly defined requirements.

It is possible that some conditions are not exactly defined, but that definitions should be
intrinsinc necessary.

Furthermore, the tests should be done in three situations:

 ● Test of the ready to use logic in the routed FPGA under several conditions (several input
signals), of course in both categories as above presented, planned tests and accident tests
(sometimes denoted by "white noise tests").

 ● Test of the whole logic on Java level with dedicated test cases, or maybe also for accident
inputs. Whereas a random value generator may be used in software. But of course the
accident situations follows only the programmed randomizations, this is not a "white noise
test".

 ● Test of modules ("unit test"). Usual for that only planned tests are determined. The behavior of
a module should follow exactly situations, this follows the denotation "design by contract". The
contract of the behavior of a module should be well defined. A module should be manageable
(rather than a complex system).

These are pure basics about tests that are generally applicable.

3.7.1 step and update operations

The content of the step(int time) and update() operations are not used for the VHDL translation.
Essential for the VHDL translation are only the existence of the inner classes designated by the
annotation @Fpga.VHDL_PROCESS in the modules and the instantiation of the modules in a class
Modules in the top level file and also possible in modules for sub modules.

It means the (manually programmed) content of this routines should follow the existing module
instances and process classes. Then only the behavior of the test is identically with the original
FPGA behavior. It means, intrinsic, this operations should be generated also for Java level. But this
is not done yet.

The step routine prepares the states before the next clock. The update routine is the clock, it is the
manifestation for the next state.

3.7.2 Input signals for test simulation in Java page 37

3.7.2 Input signals for test simulation in Java

If you are testing the whole FPGA design usual the top level file has a Input and Output inner class
with the designated input and output instance which presents the pins of the FPGA. Hence should
only set the elements of the input with the appropriate values. This input values can come from
simple test bed algorithm, or from more complex algorithm maybe also fet from values in tables,
the test cases.

If you are testing a module usual the module has interface connections. You should satisfy this
interface requirements by implementations in the test bed, for the appropriate input signals.

3.7.3 Output signals for manually evaluation of the test results

With given tools of FPGA simulation a graphical output is usual for instance:

Of course an adequate approach is possible for Java simulation because Java has graphical
possibilities, it can be programmed in a specific way, or given routines in libraries of from other
tools are usable. But is this the best one?

The very simple solution presented below may be also satisfactory:
ct.ctLow__________:0001 0000 ffff 61a7 ...0001 0000 ffff 61a7 ...0001 0000 ffff 61...
ct.ct_____________:63 63 63 62 62 62 62 61 61 61 61 60...
ct.time___________: '5.001.20 '10.001.40 ...
io.ledA___________:___AA...
io.ledB___________:___...
===
ok Test_BlinkingLed

This is the content of a simple text file, able to view with any normal stupid or better a powerful text
editor, for example https://notepad-plus-plus.org/ or http://www.jedit.org/. The original lines
produces by the Blinking_Led example has a length of ~5000 character, no problem for viewing,
shifting and copy also a part to the clipboard using the "rectangular selection" mode in Jedit or the
"column selection mode" on Nodepad++.

The lines are time lines. Each column position in each line presents the same time, more exact the
start column of a longer information. Of course you should use a monospace font in the editor.

The resolution of such an output can be one system clock per column or character, or also
condensed, for example a dedicated CE (clock enable) occurrence per column.

Because you can use proper characters to show a state, this is more obviously as only simple
lines. Especially you can assemble more signals in one line using proper characters. For that look
on a snippet of another example:
rx2.rxCE___________:____________----f---------f---------f--=======e=========e=====...
Time.time__________:^``8.54 | | | ^``9.00 | | ...

This first line shows three signals: * The 'f' or 'e' is a special clock enable signal, always one clock
period wide. * The _ is used for the idle state, then also no ce should be occur. * The --- is one
specific state, in this state a ce may occur as shown for the one clock period. * The === and + is
each another state, also with occurrence of ce. The letter for the occurrence of the ce signal is also

page 38 3.7. Test in Java

changed for better visibility.

To build this output, you should override the operation addSignals in the derived class of
org.vishia.fpga.testutil.TestSignalRecorder in the following form:

Java: Example to build a character for output
char ce;
if(thism.qrx.ce) { ce = thism.qrx.dataState ? 'e' : 'f'; }
else if(thism.qrx.stateA && thism.qrx.stateB) { ce = '='; }
else if(thism.qrx.stateA) { ce = '-'; }
else if(thism.qrx.stateC) { ce = '+'; } //(not all is full decoded)
else { ce = '_';}
this.sbCe.append(ce);

You can use more mnemonic character for the states, and also for short signals in the state. The
only one challenge is, a good documentation of the used characters. You get a very compressed
representation with more expressiveness than many lines.

The second line shows the time, which is equidistant here. This signal is created using a instance
of

org.vishia.fpga.testutil.TestSignalRecorder.Time

Using this class, the time is always written on start of line, and then in a proper distance with 5-
and 10 divisions.

The time in the line may not be equidistant, depending of the output routines. This is an advantage.
You can show an incident in detail zoomed in time, whereas non interesting time spreads are
condensed. The example shows it. The trigger for writing details is here the ctLow with the value
0x0001. It is shortly before zero crossing. The ct, the higher count is shown, its value changes if
the ctLow reaches ffff and the reload value is also set if ffff is reached before, and not as
expectable, if 0000 is reached before. This is the written logic. The time is also presented, only on
end of this zoomed spread because it needs upto 13 character positions. The time is a millisecond
value, proper readable till 10 ns resolution. As you can see the period of one count step of ct is not
5.00000 ms as expected than 5.00020 ms, 200 ns longer. This is an effect which is better able to
see with this numeric time information than in a diagram with measurement.

The algorithm in Java to sort the output for this information is not complicated:

Java: Output routine for signals
//fpga/exmpl/modules/BlinkingLedCt.java
 @Override public int addSignals (int time, int lenCurr, boolean bAdd) throws...
 BlinkingLedCt thism = BlinkingLedCt.this;
 int zCurr = this.sbCt.length(); // current length for this time
 int zAdd = 0; // >0 then position of new length for this time
 if(thism.ref.clkDiv.q.ce) { // because the own states switches only wi...
 if(thism.q.ctLow == 1) { // on this condition
 this.wrCt = 5; // switch on, write 5 steps info
 }
 if(--this.wrCt >0) { // if one of the 5 infos shouls be written:
 StringFunctions_C.appendHex(this.sbCtLow, thism.q.ctLow,4).append(' '); ...
 StringFunctions_C.appendHex(this.sbCt, thism.q.ct,2); ...
 if(checkLen(this.sbtime, zCurr)) { // add the time information if h...
 StringFunctions_C.appendIntPict(this.sbtime, time, "33'331.111.11"); ...
 }
 zAdd = this.sbCtLow.length(); //length of buffers for new time determin...
 }
 else if(this.wrCt ==0) { // end of the 5 steps, append as sep...
 this.sbCtLow.append("..... ");
 zAdd = this.sbCtLow.length(); //length of buffers for new time determin...
 }
 }// if ce

3.7.3 Output signals for manually evaluation of the test results page 39

 return zAdd; // will be used in TestSignalRecorderSet.addSignals(zAdd)...
 }//addSignals

Generally for this example, adding a signal is only done if clkDiv.q.ce is true, because: This module
changes only its state with this ce clock enable. It saves calculation time if this is quest firstly. Then
the trigger for the output is mdl.q.ctLow == 1. With this condition the next 5 ce times are presented.

Because 5 characters are appended to sbCtLow, this is the longest appendix, all lines are
elongated to this legth, as you can see in the ouput. It means this time uses 5 column positions in
the output, in all output lines.

You should not see the effort to program the output, you should see the advantage to design your
necessary output for complex signals and test cases. Programming in Java is much easier and
safer than, for example, in the C++ language or in certain scripting languages often used for
simulation tools. You can make extensive use of auto-completion during editing, you will get
immediately writing mistake messages (syntax errors) and hints for correction.

This horizontal output as also a vertical output, the time is continued in the lines than in columns, is
organized by two classes in the package org.vishia.fpga.testutil. It is explained in detail in
Java2Vhdl_TestOutput.html and for the Blinking Led example in chapter
Java2Vhdl_ToolsAndExample.html#JavaSrcTest

3.7.4. Test of modules or the whole design on Java level

In Java programming also the environment, the "test bed" should be written. In this test bed the
inputs are determined and the outputs are gathered maybe in lists appropriate to states and times.
This results can be compared with expected results in a very more proper way because Java is a
safe and familiar language.

You can use several test environment approaches. It is recommended to use the simple
org.vishia.util.TestOrg, see ../../../Java/docuSrcJava_vishiaBase/org/vishia/util/TestOrg.html

Last not least the link to the so named StimuliSelector should be also offered here:

../../../StimuliSel/html/StimuliSel.html

This tool is not used yet for the FPGA test, but it is possible. It is used yet for Simulink tests, for
algorithm tests in C/++, see ../../../emc/html/TestOrg/testStrategie_en.html#testStrategies and
more.

page 40 3.8 Writing style of logic - data assignment versus situation thinking

3.8 Writing style of logic - data assignment versus situation thinking

It is a general question, orientation to data assignment or situation evaluation. What is meant by
this?

 ● Situation evaluation: Programming is a familiar idea of program flow. The typical construct is if
… then … else. "If a situation is given, then do this and that". This is also the prevailing
mindset for VHDL and for the programming style of the 1980th (before Object Orientation
became really familiar).

 ● Orientation to data assign: The real truth of programming is: Influencing data. That is also one
of the ideas of Object Orientation. The objects are the data. Program flow and operation is
only a way to influence the data. The quest is the state of data. The flow is only a mediator for
action.

In graphical models such as Simulink or Labview immediately a data flow is modeled. This is a
data flow between function blocks, another level, nor related here. This data flow concept seems to
be in opposite to the modeling with UML, which shows not a flow but data relations especially in
Class- and Object Diagrams.

Another topic is functional programming. This is more oriented to data assign because all is result
of a function, and a function is the result of the input data. This is mentioned here only as
additional information.

Look on examples for Situation evaluation versus Orientation to data assign:

3.8.1 Style: Situation evaluation, program flow
 if(condition) {
 data = changed;
 } else if(other_condition) {
 data = other_input;
 other_data = changed;
 }

Here it is not clarified whether the data are changed anywhere other too, as well as the other_data
are changed in one of the given situation. The change of data are not well described. But the
reaction of situations (test a condition) is well described. Usual the condition is only tested one
time.

3.8.2. Style data assignment orientation (data flow)

 if(condition) {
 data = changed;
 else if(other_condition) {
 data = other_input;
 } else {
 //comment: data remain unchanged.
 }
 if(other_condition) {
 other_data = changed;
 } else if(specific_condition) {
 other_data = specific;
 } else {
 //other_data unchanged in all other situation
 }

Here we have two program blocks, because two different data are handled. The data are not
related, except one other_condition influences both. But the conditions are secondary. Each
program block for one data should be complete for this data.

The disadvantage of data assign orientation: Usual it needs more code. The test of conditions are

3.8.2. Style data assignment orientation (data flow) page 41

programmed more as one time. For all data extra. That needs also more runtime for the program in
a controller (if the compiler does not optimize).

The advantage of data assign orientation is: The program clearly shows, how data are changed. If
one looks on the part for one data specification, it is complete. The data will not be changed
anywhere else.

In practice, both approaches are often combined. Fundamental situation as "clear", "reset" are
programmed with the situation approach: "what’s happen on clear:…". But for details the data
orientation should be better.

The argument of longer execution time is not applicable for the hardware design if complex
combinatoric are stored in intermediate variable. If that is not done, the router may optimize the
combinatoric too. Only the readability of the code is decisive.

3.8.3. Ternary or condition operator in Java: condition ? a : b

Now, for thinking to data orientation, in Java (as also in C/++ the so named ternary or condition
operator can be used:
data = condition ? changed : other_input;

This is the simplest form with two variants. It can be more complex:
data = condition ? changed
 : other_condition ? other_input
 : data;

This is the same effect as the if in the examples above. But it is well obviously. Also the else
branch is exactly determined. The compiler of software languages will remove the unnecessary
assignment for the unchanged data. For this situation it is well documented that the data are used
unchanged.

In Java you can use a final keyword for such data:
final int data = condition ? changed
 : other_condition ? other_input
 : old_data;

This is similar as https://en.wikipedia.org/wiki/Functional_programming functional programming.
With the final keyword the compiler has more capabilities to optimize.

And now, for hardware design:

The new state of a FlipFlop or a FF group is complete determined by such an final functional
construct. The logic is obvious at a glance.

3.8.4. Solutions for pure VHDL

As mentioned above, VHDL was created in a time (1980th) where structured programming was
familiar. Additional to the known if … then … else … end if; VHDL knows:

'case 'selection is when choice statements⇒

This is also typical for situation thinking. The statements can contain any assignment. The
selection describes which situation is checked.

assignment value1 when condition1⇐
value2 when condition2
else value else;

This is exactly the behavior for the data assignment thinking. Only one variable is under
consideration. It is set under several conditions.

This when … else statement was introduced also for using in processes (behavioral programming)
with VHDL-2008. It is ideal for this case. But unfortunately VHDL-2008 doesn’t seem to be
considerate by all tools and all thinking:

page 42 3.8 Writing style of logic - data assignment versus situation thinking

https://hardwarecoder.com/qa/73/vhdl-when-else (2023-05-21)

4. Try to only use when else outside a process even though it’s supported in VHDL-2008. Why?
Because in 2020, some synthesis tools still have some bugs compiling VHDL-2008. Perhaps in the
future this won’t be an issue. Plus, if you have to support an older FPGA using older tools, you
won’t have 2008 as an option. Keep these issues in mind when you code. There are better options
than when else if you need to have it in a process, like using case instead.

It means it is not able to use for a tool independent translation from Java.

3.8.5. Java2VHDL for condition operator

Hence, conclusion, in processes only IF can be used for translation of the Java condition operator.
 //Java:
 data = condition ? changed
 : other_condition ? other_input
 : data;

is translated to:

 IF condition THEN data <= changed;
 ELSIF other_conditon THEN data <= other_input;
 ELSE data <= data;
 END IF;

whereas the last line can be removed. This is the same behavior as written with the conditional
operator in Java. What is obviously: The same left side term for the data assignment (data <=) is
written for each branch. But this is not an disadvantage. It is readable, and the router and
simulation tools with VHDL can proper deal with it. Only the readability of the source is a little bit
not optimal because one line may contain a writing mistake. But because it is generated code - no
problem.

Unfortunately outside of a process IF THEN ELSE cannot be used, here the WHEN construct is used for
translation of such an conditional expression.

The same problem occurs on conversion of a bit in BIT logic from STD_LOGIC:

 -- in a PROCESS:
 IF myBitValue = '1' THEN myStdValue <= '1';
 ELSE myStdValue <= '0';
 END IF;

and outside of a PROCESS

 myStdValue <= '1' WHEN myBitValue = '1' ELSE '0';

3.8.6. Multiplexer in hardware design, problem of WHEN ELSE

In Java it is very simple to write in an expression:
boolean q = a & (b ? c : d) | e;

In this case `c` and `d` is multiplexed by selecting with `b`. The rest is boolean logic.

In VHDL theoretically a

c WHEN b='1' ELSE d

is existing. It works outside of a process. But this construct doesn’t seem to be considerate by all
tools and all thinking:

https://hardwarecoder.com/qa/73/vhdl-when-else (2023-05-21)

4. Try to only use when else outside a process even though it’s supported in VHDL-2008. Why?
Because in 2020, some synthesis tools still have some bugs compiling VHDL-2008. Perhaps in the
future this won’t be an issue. Plus, if you have to support an older FPGA using older tools, you
won’t have 2008 as an option. Keep these issues in mind when you code. There are better options

https://hardwarecoder.com/qa/73/vhdl-when-else
https://hardwarecoder.com/qa/73/vhdl-when-else

3.8.6. Multiplexer in hardware design, problem of WHEN ELSE page 43

than when else if you need to have it in a process, like using case instead.

It means, the simple expression for a multiplexer, which is familiar in hardware, is not possible for
VHDL.

But instead, VHDL likes to see IF constructs:

IF b='1' THEN t = c; ELSE t = d; END IF;

This works also in processes, it is a basic, supported, known. But what is the disadvantage: As part
of an expression we need a temporary variable. And this part of expression should be extracted as
extra statement.

 PROCESS
 -- Java: boolean q = a & (b ? c : d) | e;

 SIGNAL b_sel : BIT; --process variable
 BEGIN
 IF b = '1' THEN b_sel := c;
 ELSE b_sel := d; END IF;
 q <= (a AND b_sel) OR e;

This complicates the readability. But we have VHDL, the best and safe language for hardware.

3.8.7. Programming in loops

Also VHDL knows loops. If you follow
https://vhdlguide.readthedocs.io/en/latest/vhdl/behave.html#problem-with-loops then loops should
not be used.

In software two types of loops should be well distinguished:

Classic loops for repeated execution till a condition is met. It is typical a while loop, or repeat - until.

 ● Loops only to execute an algorithm for all given instances. That is not really a execution in the
loop, it is only written as loop in software to process all given instances. This can be done also
parallel and also sequentially. But because the instances are contained in a so named
container the loop works for all member of the container. This is typically a foreach loop. In
Java it is written as:

 //Java
 for(Type element : container) {
 //do for all element.
 }

Such constructs are parallelizable also in software, for example distributed on several cores of
a processor. Why: Because all operations which are executed in a loop one after another are
independent. It means the order of execution is not important.

 ● This scheme can now be used for hardware designs for parallelization. Of course the FPGA
should have enough resources for the task.

It is also interesting that each element in a container can have a different derived type. It
means really, different operations are executed (via virtual operations). Now, thinking in
hardware: You have a planned container with elements, the elements are a little bit different
and you need a design for this elements:

a) You write code for each element extra.

b) You use a for-each loop. But because the type of the elements are only known in runtime
(depends on other program parts which may be not in focus) such a VHDL code as generated
parallel code can be built also especially in run time. The executed statements are not
executed, instead they produce VHDL code.

This is another approach, currently not supported by the Java2VHDL concept, maybe done in
future.

https://vhdlguide.readthedocs.io/en/latest/vhdl/behave.html#problem-with-loops

page 44 4. Java2VHDL - User’s guide

4. Java2VHDL - User’s guide

4. Java2VHDL - User’s guide..44

4.1. Working tree organization for sources and tools...46

4.2. The platform to edit the Java sources for VHDL...47

4.3. Tools necessary for Java to Vhdl translation and test support..48

4.4. The component srcJava_vishiaFpga..49

4.5. The translation Java to VHDL...50

4.6. Java source for top level FPGA class...52

4.7. Java source for Pin definition FPGA class..54

4.8. Java sources for Modules..56

4.8.1. Connections and inner modules...56

4.8.2. Inner class for records and process..58

4.8.3. Included VHDL modules...60

4.8.3 Constructor and init for a module...62

4.8.4 reset, step, update and output in a module..63

4.8.5 Interface access agents in Modules...63

4.8.6 Implementation of module interfaces...65

4.8.6. TestSignalRecorder in a module for Java based test..66

4.9 Java source for an emulated VHDL module..68

4.10 Statements in Java and their translation to VHDL...70

4.10.1 Variable definitions...70

4.10.2 Assignments..71

4.10.3 Expressions, Operations..72

4.10.4 Operands...74

4.10.5 Special operations for bit vectors...76

4.11. Test organization on Java level...78

4.11.1. General execution order for java execution of the FPGA functionality...................79

4.11.2. Execution order inside the FPGA for the test..82

4.11.3. The TestSignalRecorderSet to record test signals from modules..........................83

4.11.4. Evaluation of the recorder test signals..84

4.12 Checking time between FF groups..86

4.12.1 How to set timing constraints for place and route tool..86

4.12.2 Association between PROCESS variables and time GROUPs..............................88

4.12.3 Check of timing between Flipflops in Java...90

4. Java2VHDL - User’s guide page 45

Code templates and outputs

1. Java: class for the FPGA top level..52

2. Java: class for a FPGA module, references and sub modules..56

3. Java: class for a FPGA module, PROCESS classes <src>..58

4. VHDL module mentioned in Modules...60

5. Inner class describes the inclusion for a VHDL module (PORT MAP)..60

6. VHDL output for this template of inclusion for a VHDL module (PORT_MAP):...........................61

7. .Java: class for a FPGA module, constructor and init...62

8. Template for reset, step, update, output in a module <src>..63

9. Example for an interface access point..64

10. Any specific interface for a module...65

11. Implementation of the specific interface inside the module...65

12. Java: class for a FPGA module, Test support...66

13. Template for the Java class definition of an emulated VHDL module:.......................................68

14. Java, Example Variables for expression:..72

15. Simple boolean expressions in Java:...72

16. The result after translation is:...72

17. Comparison expressions in Java to set BIT and STD_LOGIC boolean:...................................72

18. Numeric operations in Java 2 VHDL...73

19. Shift operations..73

20. Operand access in a constructor of a process..74

21. Access in output() or input()..74

22. Operands for constants..75

23. Bit vector operations...76

24. concatBit variations..76

25. Timing constraints for Lattice Diamond...86

26. Start of PROCESS static class with time_ variable...88

27. Start of PROCESS constructor with ce() condition and time GROUP selection........................88

28. Example for build to ce signals...88

29. Access to clock enable with time definitions:..89

page 46 4.1. Working tree organization for sources and tools

4.1. Working tree organization for sources and tools

Look in the given example Example1_BlinkingLed.zip. The content of this file may be but need not
be the template for the file tree organization.

Generally the idea of the https://www.vishia.org/SwEng/html/srcFileTree.html is used, a file tree
similar as the familiar known maven or gradle file tree, whereas maven or gradle itself is not used
here.

Path/to/myWorkingTree
 +-src/ all sources should be versioned
 +-tools/ tools loadable from internet
 +-build/ output directory for build outputs (may be in RAM disk, or temp location)

The tools and build sub directory are created with batch files (Windows-oriented) or adequate
shell scripts. The empty build directory will be created and removed by the above shown
+clean.bat and +clean_mkLinkBuild.bat.

The example contains some more files and directories on root level, but this files are really only for
the simple example. It should be assembled with adequate content in a user project inside the src
tree.

Path/to/myWorkingTree
 +- +clean.bat batch helper file to clean all
 +- +clean_mkLinkBuild.bat batch helper file to create the build directory
 +- +gen_Vhdl_Example1.bat batch file for start generation

The last files calls a file inside the source tree at adequate positions where ist shoud be versioned..

The following files are given, to load the tools from internet, see also
https://www.vishia.org/SwEng/html/srcFileTree.html#libsTools and the following chapter 4.3. Tools
necessary for Java to Vhdl translation and test support page 48

Path/to/myWorkingTree
 +-src/load_tools/
 +-+loadTools.bat script to create the tools directory and load tools
 +-tools.bom so named "bill of material" to determine which tools
 +-vishiaMinisys.jar a simple java executable to execute the load

The src working tree is organized in the following form:

src
 +-vishiaFpga/ The necessary component for all
 | +-java/ contains Java sources
 | +-makeScripts/ make for general thinks:
 | +-genTmpl_Java2Vhdl.bat generation file for the template files
 | +-+genjavadoc_vishiaFpga.sh shell script to generate Javadoc
 | +-genVHDL_cmp/ contains the template generation result to use
 | +-.filelist For versioning, contains time stamps (missed in git)
 | +-.git reference to the git archive for this component
 | +-.gitignore
 +-exmpl_vishiaJ2Vhdl_BlinkingLed/ A user project, here the example
 | +-java/ The Java sources
 | +-lattice/ A lattice project
 | +-makeScripts/ dto
 | +-genVHDL_cmp/ The lattice project uses the VHDL from here ...
 +-load_tools/ helper for the tools, not in maven concept.

Below src there are components. In original gradle tree it is main and test to separate between the
product relevant files in main and test files. But gradle has another approach for components, load it
temporary, and that is not desired here.

The next level below the component designation is the kind of source files (as in gradle), here Java
files or some VHDL files, or makeScripts or whatever else as also cpp for C and C++ files, maybe
necessary for other parts of the whole project or just lattice for a Lattice Diamond project.

https://www.vishia.org/SwEng/html/srcFileTree.html#libsTools
https://www.vishia.org/SwEng/html/srcFileTree.html

4.1. Working tree organization for sources and tools page 47

Inside the Java components you have the familiar Java package tree, starting in this case all with
org/vishia. The Java package tree is familiar since the first Java development in the 1990 th. It is a
world wide unique deterministic of packages using the revers internet address as first members.
Hence all parts which are developed related to the https://www.vishia.org web page (Java related
parts) are denoted in the org/vishia/… package tree. For your own you should use your web
presence as start path such as com/siemens/department/… if you are from the Siemens company or
com/bosch/department/… if you are working in the Bosch company or whatever else, as usual in your
company. This should be only understand as hint or notice, may or may not be important.

4.2. The platform to edit the Java sources for VHDL

It is recommended to use Eclipse, but also another IDE is possible as your choice.

You can also use any text editor to view the sources.

To compile and run the example independent of an IDE you can use the batch file compilation. But
you need he javac compiler (part of JDK, Java Development Kit,
https://www.oracle.com/java/technologies/downloads/. or also for OpenJDK for example in
https://www.azul.com/java-alternative-vendors

Look at src/exmpl_vishiaJ2Vhdl_BlinkingLed/java/_make/+makejar_exmplBlinkingLedFpga.sh.

The compile result will be written in the build folder. From there it can be run starting
src/test/bat/test_Example1_BlinkingLed.bat. This is for your experience.

https://www.azul.com/java-alternative-vendors
https://www.oracle.com/java/technologies/downloads/

page 48 4.3. Tools necessary for Java to Vhdl translation and test support

4.3. Tools necessary for Java to Vhdl translation and test support

The necessary tools for Java to VHDL translation are really less. It is only jar files to work with
Java.

Java itself should be familiar for usage. This examples and tool files are related to the long term
provided Java-8 version from Oracle, but also some open source Java may usable.

After loading the Java files from the internet via clicking on src/load_tools/+loadTools.bat you get
the following files to work:

2022-05-23 14:14 502 +loadTools.bat
2022-05-23 14:48 584 tools.bom
2022-05-23 14:49 1.500.128 vishiaBase.jar
2022-01-24 20:25 81.128 vishiaMinisys.jar
2022-05-23 14:49 56.282 vishiaVhdlConv.jar
 5 Datei(en), 1.638.624 Bytes

If you look on src/load_tools/tools.bom you see the following:

#Format: filename.jar@URL ?!MD5=checksum

#The minisys is part of the git archive because it is need to load the other jars,...
vishiaMinisys.jar@https://www.vishia.org/Java/deploy/vishiaMinisys-2022-05-31.jar ...

#It is need for the organization of the generation.
vishiaBase.jar@https://www.vishia.org/Java/deploy/vishiaBase-2022-05-31.jar ?!MD5...

##Special tool for Java2Vhdl
vishiaVhdlConv.jar@https://www.vishia.org/Java/deploy/vishiaVhdlConv-2022-05-31.ja...

This textual file is executed by the Java class org.vishia.minisys.GetWebfile which is contained in
the here also registered vishiaMinisys.jar. It contains the internet location for the jar file, the
destination file name and a MD5 checksum. You can do this actions also manually, build and
compare the check sum. The files are able to view and load in the given location, this is
https://www.vishia.org/Java/deploy. You find also the source files beside the jar files with the same
name, only with the extension -source.zip All is open source, you can study the algorithm, and also
compile it newly. The source-zip archive contains a _make directory. You should only place all
depending jar files or sources (that is here srcJava_vishiaBase) side beside. Depending jar files
should be placed in a tools directory beside:

After newly translation you get the same jar files with exactly the same binary content and hence
the same check sum. This is the approach of reproducible build, see also
https://www.vishia.org/Java/source+build/reproducibleJar.html and also https://reproducible-
builds.org/reports/2020-03/. It means you can both check the correctness of the MD5 check sum
and check whether the sources are really valid for the given binary.

As you see, the VhdlConv itself is only a small file consist of a few Java classes. No more is
necessary. But the basics, independent of the VHDL approach, the Parser, text generator etc. are
all contained in the vishiaBase.jar. But this file has also only 1.5 MByte. The other used tools are
only the Java-8 system from Oracle. No other tools and executable are used. Nothing is stored in
any temporary or home/user locations. Getting the core of the job done usually doesn’t require
sprawling tools.

https://reproducible-builds.org/reports/2020-03/
https://reproducible-builds.org/reports/2020-03/
https://www.vishia.org/Java/source+build/reproducibleJar.html
https://www.vishia.org/Java/deploy

4.4. The component srcJava_vishiaFpga page 49

4.4. The component srcJava_vishiaFpga

This component contains some Java files. They are necessary in a user’s project for test and for
using annotations and call specific operations. It means this component should be used as source
file tree. It is located for the example.zip in:

src
 +-vishiaFpga
 +-genVHDL_cmp/ comparison which should be generated from tmpl_J2Vhdl
 +-makeScripts/
 +-java/
 +-srcJava_vishiaFpga/
 +-org/vishia/fpga/
 +-stdmodules/*.java useable in the design
 +-testutil/*.java useable for test on Java level
 +-tmpl_J2Vhdl/*.java template files for projects
 +-Fpga.java define some standard operations and...
 +-FpgaModule_ifc.java the essential module interface

You don’t need (must not) change the content of these files, only use it. It is also versioned (yet
TODO Github)

page 50 4.5. The translation Java to VHDL

4.5. The translation Java to VHDL

This is only the start of a command line execution, for the example:

java -cp tools/vishiaBase.jar;tools/vishiaVhdlConv.jar org.vishia.java2Vhdl.Java2Vhdl
 ... -sdir:src/exmpl_vishiaJ2Vhdl_BlinkingLed/java
 ... -sdir:src/main/java/srcJava_vishiaFpga
 ... org.vishia.fpga.exmplBlinkingLed.fpgatop.BlinkingLed_Fpga
 ... -o:build/BlinkingLed_Fpga.vhd -tmp:build/ -rep:build/BlinkingLed2Vhdl_report.txt

Note, the ` … ` on line start means continue of the line before. This is a very long line because of
the arguments, not obviosly. Therefore a better solution is possible, given in the example:

java -cp tools/vishiaBase.jar;tools/vishiaVhdlConv.jar org.vishia.java2Vhdl.Java2Vhdl
 ... --@%0:convArgs
::convArgs ##argument label. Space after the label, trim trailing spaces and comme...
::-sdir:src/exmpl_vishiaJ2Vhdl_BlinkingLed/java ##source dirs from current
::-sdir:src/main/java/srcJava_vishiaFpga
::-top:org.vishia.fpga.exmplBlinkingLed.fpgatop.BlinkingLed_Fpga ##top level fil...
::-o:build/BlinkingLed_Fpga.vhd ##output
::-oc:build/ BlinkingLed_Fpga.lpfx ##part of contraint
::-tmp:build/
::-parseData ## The java data tre...
::-parseResult ## The parse result ...
::---parseLog ## an elaborately pa...
::-rep:build/BlinkingLed2Vhdl_report.txt ##report with meta i...
pause

General with the argument --@path/to/argfile some arguments can be read from a file. Whereas
each line of the file is one argument. That makes it also possible to use white spaces in arguments
without quotation marks. This feature is contained in org.vishia.util.Arguments. But often an extra
file for that is not nice. That’s why the same file as the command file is used, given with the %0 in
Windows batchfile syntax. With a given label after the argfile path after a colon :convArgs the
argument processor searches this label in the argument file, also after up to 5 comment characters
till the 5th position. The same comment characters are tested in the following lines to regard which
are argument lines. That lines should be all commented lines for the batch script, starting with ::.
Then the arguments are written after, one in each line. The first line without these comment
character, here the pause line is then the termination of argument lines. The arguments can be
commented with the given ## as comment characters after the label. One space between label
and argument comment characters forces removing trailing spaces in the line, which is often
sensible but not at all. Hence it can be controlled here.

With this argument designation the arguments are well readable.

A short explanation of the arguments comes if the converter is started without arguments:

Java2Vhdl made by HSchorrig, 2022-02-16 - 2023-04-01
 see www.vishia.org/Fpga/html/Vhdl/Java2Vhdl_ToolsAndExample.html
-i:path/to/template.vhd ...optional, if given, read this file to insert
-o:path/to/output.vhd
-oc:path/to/constraint.ext
-top:pkg.path.VhdlTopModule ... the top level java file (without .java, as class path)
-sdir:path/to/srcJava ... able to use more as one
-sl ... optional, if given, remark src and line
-parseData ... optional, if given, writes the parser java data tree
-pd ... optional, same as -parseData
-parseResult ... optional, if given, writes the parser result
-pr ... optional, same as -parseResult
-parseLog ... optional only with -parseResult, writes an elaborately parser log file
-pl ... optional, same as -parseLog
-tmp:path/to/dirTmp for log and result
-rep:path/to/fileReport.txt ... optional

This is of course only a short description, with the link to this document.

4.5. The translation Java to VHDL page 51

 ● The -i:path/to/template.vhd can be used if only a part of the VHDL file should be generated,
the frame is given with this file. The generated parts are firstly the TYPE … RECORD
definitions and the SIGNAL ….:_REC instances, ` and secondly the PROCESS . The given
file should contain labels in the following form:

 ...start of the file, with heading, ENTITY, Ports
ARCHITECTURE BEHAVIORAL OF

-- INSERT Java2Vhdl
 ... This parts are replaced by the new generated one TYPE ... RECORD definitions
 ... and SIGNAL:_REC` instances
-- END Java2Vhdl
 ... further content, SIGNAL and COMPONENT definiton, especially the
BEGIN
 ... and more given content
-- INSERT Java2Vhdl
 ... This parts are replaced by the new generated processes
-- END Java2Vhdl
 ... finishing content

 ● -o:path/to/output.vhd is also used if -i:… is given. It means the -i:… file will not be replaced,
only read. It may be recommended to generate a new file first to a temporary location in the
file system, and then compare because of changes, at least replace.

 ● -oc:path/to/constraint.ext: If given some information about time cell groups are written into it,
see 4.12.2 Association between PROCESS variables and time GROUPs page 88.

 ● -top:pkg.path.VhdlTopModule This is the class path with package path of the top level Java
class for the FPGA design. Usual this class contains a class Modules inner class to determine
all other sub modules.

 ● -sdir:path/to/srcJava This argument can be given more as one (usual) as search path for the
Java files. It contains the directory where the Java package path starts (with org/…), not the
directory of the Java file itself.

 ● -sl means "source line". If given then in the generated -o:… file the source file and the line of
the Java source for the appropriate generated VHDL line is written as ---path/to/src: line. This
helps to associate generated lines and Java source lines. However, using this feature makes
it a little bit difficult to compare a newly created file with the previous version because often
the lines are shifted in the source, hence only all the line numbers are changed. It makes
really changes lesser obviously. It may be recommended to generate both versions, with and
without this option, and store both as second source, without line numbers for a simple
version comparison and with line numbers to search assiciations with the Java sources.

 ● -tmp:path/to/dirTmp It is possible to output intermediate files for parsing results etc. especially
during development, not used in the compiled version.

 ● -rep:path/to/fileReport.txt This is an interesting report file about modules, interfaces, variables
and should be stored beside the VHDL output file.

page 52 4.6. Java source for top level FPGA class

4.6. Java source for top level FPGA class

See also the example chapter [topclass].

1. Java: class for the FPGA top level
package com.company.department.project;

import org.vishia.fpga.FpgaModule_ifc;
import org.vishia.fpga.stdmodules.Reset;

class MyFpgaTop implements FpgaModule_ifc {
 public class Modules { // (1)
 public final MyFpgaIo ioPins = new MyFpgaIo(); // (2)
 public final Reset reset = new Reset(this.ioPins.resetInPin); // (3)
 final ModuleXY moduleXY = new ModuleXY(); // (4)
 Modules () {
 this.moduleXY.init(this.reset, this.ioPins.specificIfcAccess); // (5)
 }
 }
 public final Modules modules = new Modules(); // (6)

 public MyFpgaTop() { } // (7)

 @Override public void reset () { // (8)
 this.modules.reset.reset();
 this.modules.moduleXY.reset ();
 }

 public void input () { // (9)
 this.modules.moduleXY.in.varx = this.modules.ioPins.input.in_Pin;
 }

 @Override public void step (int time) { // (10)
 this.modules.reset.step(time);
 this.modules.moduleXY.step(time);
 }

 @Override public void update () { // (11)
 this.modules.reset.update();
 this.modules.moduleXY.update();
 }
 public void output () { // (12)
 this.modules.moduleXy.output();
 this.modules.ioPins.output.out_Pin = this.modules.moduleXy.getValxy();
 }
}

(1) The class for the top level FPGA should contain an inner class Modules which defines the
used modules for the Java2VHDL translation. On translating this top level VHDL file as given
argument of translator -top:..., all module classes will be detected and also translated, also
for sub modules inside the modules named here.

(2) One of the module should be named ioPins. This module is recognized as the IO pin
description of the whole FPGA. See next chapter

(3) The modules are defined by the chapter 4.8. Java sources for Modules page 56. Note: You
can have more as one module (instance name) with the same type (class name). Any module
instance will be placed in the FPGA. But of course the java file of the class is only parsed
once.

(4), (5) The modules can be either instantiate by the default constructor, then they should have a
init(…) call. Or they can instantiate with initial arguments without init(). he arguments are used
form the here named modules itself. See also chapter 4.8.1. Connections and inner modules,

4.6. Java source for top level FPGA class page 53

page 56.

(6) In the modules can be simple initialized, because the top level has no other connections.

(7) The constructor of the top level is also simple and empty.

(8) The reset() should call all reset() from the modules. This is not used for Java2VHDL, but
important for simulation.

(9) The input() and also the output() operation is evaluated for Java2VHDL. Its assignments
generates assign statements in VHDL. The input() should fill variables in a possible in sub-
Instance in a module, see chapter 4.8.1. Connections and inner modules, page 56 (2).

(10), (11) The overridden operation step() as well as update() should call all adequate
operations for all modules. It is not used for the Java2VHDL translation, but of course for the
test.

(12) The output() operation is evaluated for Java2VHDL. Its assignments generates assign
statements in VHDL especially to set the output pins of the FPGA.

Module connections

The top level Java file contains modules, but also a module Java file (see chapter 4.8. Java sources
for Modules page 56) can contain sub modules. This (sub-) modules are named in the class
Modules as inner class of the top level class and also possible as inner class of a Module.

The (sub-) modules are connected together. But other as in classic VHDL, where the modules are
built from different VHDL files, all of this modules are combined in a large VHDL file. It is not so
large, it can be overviewed. The Java-modules builds TYPE … RECORD and SIGNAL definitions in VHDL.
Hence it is simple to access for one process in other SIGNAL structures, and also the logic is more
simple to map to the implmenting FPGA (view in Floorplanner etc) as using the module structure in
original VHDL with some VHDL files with its PORT structures and PORT MAPPING

How Modules are connected with references:

This is described as concept also in chapter 3.4.3. References (aggregations) in Object Orientation
kind page 19. Also the following chapter 3.4.4. Interface technology in Java for VHDL is
meaningfully. The arguments for the references in the modules constructors and init() are always
access operations with the interface type. That enables the simple exchange of one module by
another module with other content and definitions, but the same type of access operations. This is
important for flexible unit tests, as known in the Object Oriented programming, also usable here.

The other kind of module connections are the assignment of variables. This is near the classic
VHDL approach. The in and out instances in the modules java classes are similar a PORT
definition in a VHDL file. But other than in modular VHDL this instances are also mapped to a
 TYPE ...In_REC RECORD and SIGNAL ..._In : ...In_REC; definition which is more simple.

But for modules which are included as real VHDL module this assignments builds the necessary
PORT_MAP assignments. See chapter 4.8.3. Included VHDL modules page 60.

page 54 4.7. Java source for Pin definition FPGA class

4.7. Java source for Pin definition FPGA class

See also the example chapter 5.2 The FPGA pin description file.

The Java class for the FPGA pin description is that class in the top level *.java file, which is
detected in the sub class Modules definition as module with the name ioPins:

Java: Modules class in top level contains ioPins definition of the FPGA
 /**The modules which are part of this Fpga for test. */
 public class Modules {

 /**The i/o pins of the top level FPGA should have exact this name ioPins. */
 public BlinkingLed_FpgaInOutput ioPins = new BlinkingLed_FpgaInOutput();

From the appropriate class the inner classes static class Input and static class Output are
recognized. The elements in this class are the pins. The pins cannot be vectors, only boolean and
char for BIT and STD_LOGIC with the appropriate annotations:

Java: class for IO pins of the FPGA
class MyFpgaIo implements FpgaModule_ifc {
 public static class Input {
 public boolean reset_Pin = true;
 public char tristatePin = 'L';
 }
 public static class Output {
 public char tristatePin;
 public boolean testout;
 }

 public final Input input = new Input();
 public final Output output = new Output();

 ... some access operations

 public class TestSignals extends TestSignalRecorder {
 ... }
}

This is the template for an IO pin class. The reset()[} step(int time){} and update(){} operations
should formally contained here also, but can be left empty. It is nothing todo with the pins, also for
Java-Test. The testSignals can be filled for the Java test.

The access operations are the same concept as in modules, it helps also to exchange modules in
the system, using the interface concept especially with anonymous interface implementations, see
also 3.2.4.4 Interface agents or access instances

4.7. Java source for Pin definition FPGA class page 55

second page

ENTITY FpgaTop_SpeA IS
PORT (
 clk: IN BIT; (1)

(1) The VHDL translator defines automatically a signal clk as BIT. It is used in the VHDL
processes as PROCESS (clk) … BEGIN IF(clk'event AND clK='1') THEN … . The clk itself is not
used in Java, because it is the calculation clock between all step(time) and update().

page 56 4.8. Java sources for Modules

4.8. Java sources for Modules

See also chapter 5.3 A module file.

A Java source of a module should contain all the parts in the following sub chapters. Whereby the
@Fpga.LINK_VHDL_MODULE inner class for included VHDL module (chapter4.8.3. Included VHDL
modules page 60) is of course optional, only if such is necessary. Also the number of
@Fpga.VHDL_PROCESS inner process classes (chapter 4.8.2. Inner class for records and process,
page 58) can be vary, maybe omitted if the module has not states, only logical relations.

Last not least the number of @Fpga.IfcAccess anonymous interface implementations (chapter
4.8.5 Interface access agents in Modules page 63) depends on the necessary access agents from
other modules.

4.8.1. Connections and inner modules

2. Java: class for a FPGA module, references and sub modules
public final class ModuleXY implements FpgaModule_ifc { // (1)
 public static class In { (2)
 boolean in1;
 @BITVECTOR(8) inVal;
 }
 public final In in;
 public static class Out { (3)
 boolean out1;
 @STDVECTOR(8) outVal;
 }
 public final Out out;
 //
 static class Ref { // This class contains references to other modules (4)
 Reset_ifc reset;
 OtherModule_ifc mdlXx;

 Ref (Reset_ifc reset, OtherModule_ifc mdlXx){ (5)
 this.reset = reset; this.mdlXx = mdlXx;
 }
 }
 private Ref ref; (6)
 //
 static class Modules { // This class contains sub modules (7)
 final ModuleXY moduleXy = new ModuleXy(); (8)
 Modules (Ref ref, MyModule thism) { (9)
 this.moduleXy.init(ref.reset);
 }
 }
 Modules modules; (10)

(1) This is a module with sub modules and references.

(2) A class In is possible, but often not recommended. It contains signals which should be set
from outer assignments. The class In builds a TYPE MyModule_In_REC IS RECORD and per
module instance a SIGNAL module_In : MyModule_In_REC in the VHDL file, which’s elements are
set in other modules. The usage of class In is unnecessary if consequently the Object
Oriented approach is used, see class Ref.

(3) A class Out is possible, adequate to class In, to access output values immediately. It builds
also an own TYPE MyModule_Out_REC IS RECORD and an instance per module.
If one VHDL file for the module is generated, it is the interface of this VHDL module generated
adequate to the top level.

If the module is used flattened in the enclosing module, then specific Records for this In and
Out inner classes are created. The values are gotten and taken there. But the enclosing

4.8.1. Connections and inner modules page 57

module is responsible to set content to In and put content from out.

(4) The class Ref is usual necessary, for the idea of references to other modules usual known in
ObjectOrientation programming. This references are aggregations in UML slang.
Aggregations are relations to other modules given on startup, that is proper.

The name Ref need ot be used for this role, detect by Java2VHDL. The references to other
modules can be especially the interfaces, not the instance types. Especially different signals
or signal groups as access to another module can be references by the concept of chapter:
3.4.4. Interface technology in Java for VHDL page 23. It means connections (single signals or
signal groups) are used to connect the module, not referencing any other module as a whole.
This increases the number of connections, but also the flexibility.

For the implementation in VHDL the references are translated to direct accesses to the RECORD
signals from other modules flattened in FPGA. For the implementation level that are simple
accesses to other FlipFlops etc. It means, this Object Orientated references are dissolved first
in the flattend VHDL, and second by the implementation. But from view point of modularity in
the Java sources they are flexible. The references are connected outside on instantiation of
the module, see chapter 4.6. Java source for top level FPGA class page 52

(5) The constructor of Ref gets all references to the real implementing modules. It is called either
on the init(...) of on the construction of the module, see 4.8.3 Constructor and init for a
module page 62. The names of arguments for the Ref(…, argument, …) have to be the same
as the names of the references variables itself in the class Ref{ ... }. Also the same
names used for the module constructor arguments and for the module’s init(… arguments)
operation needs to be exactly the same as in the class Ref{ … }. The Java2VHDL translator
gets this names in the argument lists and fulfills it with the accesses given in call of the
module. Inside the inner classes for @Fpga.VHDL_PROCESS .. class (next chapter 4.8.2. Inner
class for records and process) the names of the access to ref.name... are used. This
identifier names are used as key to search the access in a Map (index), to fulfill it with the
expression which is given on initialization of a module. It is very simple. Use the same names.
Note that the argument name, for this example mdlXx is well distinguish from the class-
(instance-) variable with the same name mdlXx which is addressed using the this.reference.

(6) The instance of ref and also modules (10) is set in construction of the module , see chapter
4.8.3 Constructor and init for a module page 62 (1) .. (4).

(7) The class Modules is only necessary if the module has sub modules. The identifier Modules
and modules should be written as shown here, detect by Java2VHDL. Note: In UML slang the
sub modules are compositions.

(8) Inside the Modules class any other modules can be defined and initialized as sub modules of
this modules. This sub modules are defined in extra module classes of course. Initializing is
possible either with the constructor of the sub module called in the constructor of Modules or
see (10).

(9) The constructor of the Modules for the sub modules is called in the constructor of this module
class, see 4.8.3 Constructor and init for a module page 62. Initializing of the sub modules is
also possible via the init(…) operation.

(10) The modules are initialized in the ctor of this module, see 4.8.3 Constructor and init for a
module page 62). Other as initializing in the top level (see 4.6. Java source for top level
FPGA class page 52) the initializing of the sub modules may need references which are given
as arguments of the module’s constructor from other modules outside (as direct associations
from sub modules to outside). May be there are the same as also stored in Ref ref of this
module.

page 58 4.8. Java sources for Modules

4.8.2. Inner class for records and process

3. Java: class for a FPGA module, PROCESS classes
 @Fpga.VHDL_PROCESS public static class Q_CE0 { // (1)
 public final CeTime_ifc time_; // (2)
 final boolean var1; // (3)
 @Fpga.STDVECTOR(16) public final int val;
 Q_CE0() { // (4)
 this.time_ = null;
 this.var1 = false;
 this.val = 0x0000;
 }
 @Fpga.VHDL_PROCESS Q_CE0(int time, Q_CE0 z, Ref ref, ModuleXY thism) { // (5)
 this.time_ = thism.srcCE0; // (6)
 if(thism.srcCE0.ce()) { // (7)
 if(ref.reset.res(time, 1)){ // (8)
 this.var1 = false;
 this.val = 0x1234; // (9)
 } else {
 this.val = z.val + 1;
 this.var1 = (z.val == 0x0010);
 }
 } else throw new IllegalStateException(); // (10)
 }
 }
 protected Q_CE0 q_CE0 = new Q_CE0(); // (11)
 private Q_CE0 q_CE0_d = q_CE0; // (12)

See also example in chapter 5.3.3 Inner static classes in a module which builds a TYPE RECORD
and PROCESS in VHDL

(1) A PROCESS class is a inner @Fpga.VHDL_PROCESS static class, here named only '[J]Q’
for the first class of the module building Q outputs of Flipflops, usable also a more
comprehensive name. It describes a PROCESS in VHDL and the associated RECORD
variables.

Note that the inner class for the Process should be static. It means this inner class is
independent of the environment, the module class. To access the environment class an
argument thism should be used, see (5).

(2) The variable time_ won’t be used immediately for Java2VHDL translation. It is for generation
and checking timing constraints, see 4.12.2 Association between PROCESS variables and
time GROUPs page 88. It refers a CeTime_ifc instance, or null after initialization.

(3) Some variables are defined (should be final) which builds in VHDL a member of the TYPE
MyModule_Q_REC

(4) The default constructor is only for Java test. It should initialize all variables as the hardware in
the FPGA does, usual with 0 (hardware reset).

(5) The parameterized constructor marked with @Fpga.VHDL_PROCESS should be called in the
step(…) routine and describes (is translated) to a PROCESS in VHDL. As seen from the hardware
functionality, it describes how the D-inputs (this…) are calculated as combinatorics from the Q
outputs of the own Flipflops (z….) and from other signals (ref… , thism… , modules...).

Dn+1 = fn(Qn, Inputs)

The constructor of the process can/should get the following arguments, the names are
obligate, the order in the argument list is free, but time and z should be named first. These
names are recognized during VHDL translation and used for access within the statements.

 • time: The currently central time of this step for timing assertions.

4.8.2. Inner class for records and process page 59

z: This is the current state (or the state before) of this process variables Qn. z is as in Z-
Transformation controlling theory.

thism: The reference to the own module, the environment class instance, to access
immediately states from other RECORD variables from the other processes of the own
module

ref: Access to the Ref ref class for access to other modules (aggregated).

modules: Access to the own sub modules defined in the Modules inner class.

(6) Assignment of any implementation of the CeTime_if determines the association of the time
GROUP which is delivered from CeTime_if#timeGroupName() , and allows access to the last time
of this time Group. This assignment is not used for generating the VHDL file, but for
generating of the constraint file

(7) This is a typical condition where a 'clock enable' signal is used, here from another process in
the same module referenced via thism.srcCE0 It is adequate translated to VHDL and
adequate implemented (using the CE input of Flipflops) in the hardware.Because it is the first
level if(…), it is related to the whole PROCESS functionality. It has two tasks:

 • The resulting access value is generated in the VHDL code. It is here IF (mdl1_PCE.ce)='1'
THEN. Hence it is the common clock enable in this process.

 • For timing constraints it clarifies that this SIGNAL … RECORD is member of the same time GROUP as
the accessed CeTime_ifc. See 4.12 Checking time between FF groups page 86.

(8) Constructions as if(… are translated to VHDL with given rules, see chapter 4.10 Statements
in Java and their translation to VHDL page .70

(9) All variables of the own class, in VHDL it is the built TYPE … RECORD, should be set in any
branch. The final declaration of the variables helps. You cannot forget or set a variable twice.

Note: You need use this. to mark the variables as class (instance) variables of the own
class. In Java (as also in C/++) normally writing this. is optional, can be omitted, but may be
seen as recommended. But for the Java2VHDL translation it is necessary. Note that in the
early years of enthusiasm for the new class-oriented operations it was recommended to leave
the thiz→ designations for variables defined on class level. But meanwhile auto completion
and "be explicitely" is more important.

(10) This else branch is the do nothing branch. In VHDL it is omitted. But in Java it must be
present, because the variable value should be set, of course from the state before (from the Q
output of the own Flipflops) writing this.var1 = z.var1;. That is the here not shown
possibility. Here it is presumed that in the step(…) operation the constructor is only called in
condition of thism.srcCE0.ce(). It saves calculation time. Hence the else branch is never
entered. That is tested, instead set of all variables with there z… values. That saves writing
effort.

(11) The name of the instance should be exact the same as the PROCESS class name, only
written with lower case as first character. The instance of this class presents the SIGNAL …
_REC in VHDL. It can be accessed also from other processes in this module, from test
preparation and for any tests and in debugging. This instance may be public for a more
simple access, but should be intrinsically protected. For access, from other modules it is
preferred using interface accesses

(12) The …_d instance presents the D-inputs from Flipflops, see following step(…) and update().,
see 4.8.4 reset, step, update and output in a module page 63. It should be any time private.
The reset-initialization should follow the (11) as shown in pattern.

page 60 4.8. Java sources for Modules

4.8.3. Included VHDL modules

There are two reasons to include a given VHDL file in the generated sources:

• a) Reuse existing VHDL-defined modules

• b) Often the tools for FPGA design have features to generate VHDL files for specific features, for
example for a RAM block.

For simulation on Java level, the functionality of the VHDL code should be emulated. How to write
the emulation for a given VHDL module: See 4.9 Java source for an emulated VHDL module page
68.

4. VHDL module mentioned in Modules
 static class Modules { // This class contains sub modules
 final VhdlModuleXy moduleXy = new VhdlModuleXy(); (1)
 Modules (...) { … }
 }
 Modules modules;

(1) First, the included VHDL module must exist in the inner modules class, see 4.8.1.
Connections and inner modules, page 56. This is also valid for the Top level Java class 4.6.
Java source for top level FPGA class 52: This module has no references to connect. The
name is part of the instance name of the VHDL module in this module (name of the PORT MAP).
The type is the name of the corresponding Java class to emulate this module, see 4.9 Java
source for an emulated VHDL module page 68.

5. Inner class describes the inclusion for a VHDL module (PORT MAP)

 @Fpga.LINK_VHDL_MODULE private static final class Vhdlink_moduleXY { (2)
 boolean final int inDataXy; (3)
 @Fpga.STDVECTOR(7) final int outDataXy;
 Vhdlink_moduleXY() { (4)
 this.inDataXy = false;
 this.outDataXy = 0;
 }
 @Fpga.LINK_VHDL_MODULE Vhdlink_moduleXY (int time (5)
 , VhdlModuleXy vhdlMdl (6)
 , Ref ref, Modules modules, MyModule thism) { (7)
 this.inDataXy = ref.refXy.signal && thism.processXy.signal; (8)
 vhdlMdl.input.Clock = Fpga.clk; (9)
 vhdlMdl.input.inpXz = thism.processXy.vectorX2; (10)
 vhdlMdl.input.inDataX9 = inDataXy; (11)
 vhdlMdl.step(time) (12)
 vhdlMdl.update();
 vhdlMdl.output.outDataXy = vhdlMdl,output.outDataX5; (13)
 }
 }

(2) Any instance of a included VHDL module needs such an inner class (in sub modules, also in
the top level class file). It must be marked with @Fpga.LINK_VHDL_MODULE. The name of this
inner class should be start with Vhdlik_. Then it is continued exact with the name of the
instance in Modules (1). This is the coherence for the VHDL translation.

If you have more as one PORT MAP with the same included VHDL file, this should be done more
as one time. This inner class is the adequate for the VHDL PORT MAP.

(3) For any output signal of your VHDL module (there in the ENTITY definition) and for all input
signals which are not given as simple signal you need an inner final variable in your inner
class. After Java2VHDL this variables builds a TYPE MyModule_Vhdlink_moduleX_REC IS
RECORDwith a SIGNAL myModule_Vhdlink_moduleX : MyModule_Vhdlink:moduleX_REC;

(4) The default constructor in Java is only necessary for Java compilation and test.

4.8.3. Included VHDL modules page 61

(5) The efffective constructor is marked with @Fpga.LINK_VHDL_MODULE. As also for inner Process
classes it has a int time argument.

(6) The second argument have to be named vhdlMdl, detected by Java2VHDL. The type of this
argument, here VhdlModuleXy is the same type as the vhdl module in (1). It is the Java class
name for the emulation class of the VHDL module, see 4.9 Java source for an emulated
VHDL module page 68.

(7) All other arguments are adequate PROCESS inner classes. You may need the Ref ref for
access to other modules, the Modules modules to access to other inner modules, and thism to
access to other RECORDs of this environment module, or maybe it is the top level class.

(8) Now, in the implementation of the constructor, first the intermediate variables should be
assigned with any expression accessing the environment.

(9) A clock input of the VHDL PORT MAP should be connected. The Fpga.clk is the access to
use the signal clk, automatically defined in the ENTITY of the Top level FPGA.

(10) .The inputs of the VHDL module should be set. This is for the test execution in Java, as well
as for the PORT_MAP assignment in VHDL.

(11) If an input port can be assign with a simple assignment of a variable, it should be done
without an additional intermediate variable.

(12) step(time); and update(); are especially for Java test. But it should be written between input
settings and output getting.

(13) The assignment from the output to the output variable of this RECORD builds the PORT_MAP
assignment in VHDL for the output variable.

The value of the output can now gotten from the SIGNAL of the RECORD of (3).

6. VHDL output for this template of inclusion for a VHDL module (PORT_MAP):
TYPE MyModule_Vhdlink_moduleX_REC IS RECORD
 inDataXy : BIT;
 outDataXy : STD_LOGIC_VECTOR(6 DOWNTO 0);
END RECORD MyModule_Vhdlink_moduleX_REC; (14)
…

SIGNAL myModule_Vhdlink_moduleX : MyModule_Vhdlink:moduleX_REC; (15)
…

-- The external VHDL file RAM_SpiRamSel is included here.
-- Assignments for VHDL instance inputs:
myModule_Vhdlink_moduleX.inDataXy <= otherModuleXy.signal AND … (16)

myModule_Vhdlink_moduleXy_vhdlMdl: VhdlModuleXy (17)
PORT MAP(
 Clock => TO_STDULOGIC(clk) ,
 inpXz => TO_STDLOGICVECTOR(myModule_processXy.vectorX2) ,
 inDataX9 => myModule_Vhdlink_moduleX.InDataXy ,
 outDataX5 => myModule_Vhdlink_moduleX.outDataXy
); --PORT MAP VhdlModuleXy

(14), (15) Definition of necessary intermediate variables in RECORD

(16) Assignment of the input variable(s)

(17) PORT MAP definition of the included module.

page 62 4.8. Java sources for Modules

4.8.3 Constructor and init for a module

Some of this content is relevant for the Java2VHDL translation, other only for the test in Java.
Follow the explanation.

7. .Java: class for a FPGA module, constructor and init
 public MyModule (Reset_ifc reset, OtherModule_ifc mdlXx) { <1>
 this.ref = new Ref(reset, mdlXx); <2>
 this.modules = new Modules(ref, this);
 }

 public MyModule () {} // use init to initialize <3>

 public void init (Reset_ifc reset, OtherModule_ifc mdlXx) { <4>
 this.ref = new Ref(reset, mdlXx);
 this.modules = new Modules(ref, this);
 }

 <1> There are two variants of construction. <3> and <4> shows the other one. This constructor gets
all references to other modules. They are aggregations as explained in . ructor of the module
in Java can get all references, and

<2> should initialize the ref and also sub modules modules if existing.

<3> Or there is a argument less ctor, paired with the

<4> init(...) operation. This variant is necessary to use if the order of modules is not exactly a
tree, but the modules have their specific cross connections. Both is the same for the
generated VHDL file, or also for Java, it is a known problem on initializing order.

It may be seen as recommended to try initializing with the constructor, where the modules are
in a tree organization, and only use the init(...) for some cross depending modules. But it
is also proper to use generally init(...). That is a common discussion of modularity, not a
topic of Java2VHDL.

4.8.4reset, step, update and output in a module page 63

4.8.4 reset, step, update and output in a module

8. Template for reset, step, update, output in a module

 public void reset () { // call of the empty ctor for all process inner classes
 this.q = this.q_d = new Q(); // to set hardware reset values <5>
 this.modules.xy.reset();
 }

 public void input () { // optional sets input records of sub modules <6>
 this.modules.xy.in.var = ref.mdlXx.q.var;
 }

 public void step (int time) { // calculates the D-states (pre states) <7>
 this.pCE_d = new PCE(time, this.pCE, this.ref);
 if(this.srcCE0.ce()) {
 this.q_CE0_d = new Q_CE0(time, this.q_CE0, this.ref, this);
 }
 if(this.srcCE0.ce()) {
 this.val_CE7_d = new Val_CE7(time, this.val_CE7, this.ref, this);
 }
 this.modules.submdlXz.step(time);
 }

 public void update () { // Activates the Q-states (Flipflop outputs)
 this.q = this.q_d; // this is the clock edge in hardware <8>
 this.modules.xy.update();
 }

 public void output () { // optional, but necessary for top level <9>
 this.out = this.q.var && this.modules.xy.out.var;
 }

<5> The reset() operation should be set the state of the FPGA as it is after power on, especially
after repeated tests. Do not base on states before! This is done simply by calling all the
standard constructors of the processes, which should be programmed to force the power-on-
reset states. The content of reset() is not relevant for Java2VHDL translation, but for Java-
test. Do also initialize the …_d reference!

<6> The input() operation is only necessary if any sub module has an In sub class that should be
set with information from the environment (from ref). The content of input(), all assignments,
are evaluated by the Java2VHDL translator.

<7> The step(int time) operation should call all constructors of the processes in the shown kind.
Also (as in all other operations too step() of sub modules should be called. The content of
step() is not relevant for Java2VHDL translation. It should be written in the unique kind to
ensure tests.

<8> The update() should be also written in the unique kind for tests, not relevant for the
Java2VHDL translation.

<9> The content of output(), all assignments are relevant for Java2VHDL translation. It should get
the values from processes which should be placed manually to outputs, especially in the top
level class for the output pins of the FPGA. Generally the processes (step(int time) and
update() informations from inputs are taken usual via ref, but only the own state is set. It
means the output() is really relevant for the output pins.

4.8.5 Interface access agents in Modules

An interface access point is an anonymous interface implementation in Java which accesses

page 64 4.8. Java sources for Modules

internal data in the module in any process for data access interfacing to other modules.

9. Example for an interface access point
 @Fpga.IfcAccess Bit_ifc getValxy = new Bit_ifc() { //(1)
 @Override public boolean getBit () { //(2)
 return ModuleXY.this.q.var1; //(3)
 }
 };

(1) The @Fpga.IfcAccess is necessary as marker for this interface to detect for java2Vhdl.

The type of this anonymous interface implementation is the type of the necessary interface,
here Bit_ifc which is defined in import org.vishia.fpga.stdmodules;

The name of the implementation, here getValuexy, is the access name and should be used
as actual argument of any other module’s constructor or init(…) which needs this access as
aggregation.

The new Bit_ifc() { is necessary in Java syntax to create the instance.

(2) The getBit() operation is defined in the interface, hence it have to be implemented here.

(3) The implementation should (only) contain return following an expression. All other statements
are ignored for Java2Vhdl. Especially it is possible to write either specific statements for test
or als to check the timing constrains, see Error: Reference source not found page Error:
Reference source not found.

The expression after return is evaluated as access to the appropriate data element.

Writing ModuleXyY.this. is necessary. In Java commonly this. can be omitted because the
Java translator detects automatically the variable defined in the environment class. But writing
the qualified access may be also recommended for normal Java programming. For the
Java2Vhdl translator it is necessary.

q is the instance name of a process inner class in this module, which builds a RECORD in
VHDL with the name MyModule_Q_REC (with the type Q) and a SIGNAL mdl1_Q : ModuleXY_Q_REC;
with the given module instance, here mdl1.

In a calling environment, here written as this.modules.mdl1.getValxy.getBit() in the top level
class, it produces the code mdl1_Q.var1, it is resolved to the simple access to the variable var1 in
the given instance mdl1_Q.

The elaborately diagram shows the relation in UML from view of the Java code:

 • The aggregation mdl1 inside the using ModuleA refers the interface access instance of
ModuleXY$1 via the given Bit_ifc type. This instance was created before inside the ModuleXY.

 • The not named but referenced instance of ModuleXY$1 (in heap), which implements the
Bit_ifc, refers its environment class ModuleXY with the ModuleXY.this pointer. Hence it
knows the whole instance of ModuleXY and can access all members, also private ones
because it is an inner class. Hence it can return in its implementation a value inside ModuleXY,

Figure 4: Interface Access UML diagram

4.8.5 Interface access agents in Modules page 65

which is here q.var1.

 • In the initialization phase the constructor of of the top level or the superior module constructs
first the ModuleXY instance together with the instance of its inner class ModuleXY$1. Then, with
knowledge of this instance (dependency, dotted line), it delivers the reference to the proper
ModuleXY$1 to the constructor of the using ModuleA. That constructor sets the mdl1 reference,
hence knows the implemenation.

That are the full cohesion in Java shown with UML approaches. It is a little bit sophisticated for
practice.

A more simple short diagram shows the same
cohesion for practical use:

The type of the interface is noted with the
reference mdl1: Bit_ifc, after colon. The
aggregation goes to the variable getValuexy
inside the class ModuleXY. Because the
aggregation line is not connected to the class,
it is connected to the inner reference
getValuexy, the type of the class ModuleXY should not be known. It should only be known by wiring
the aggregations in the initialization phase, which is shown in the UML figure above with the dotted
line of dependency. Here the dependency should not be elaborately shown, it is clarified by
showing the target from mdl1 inside the named type and instance.

Note that this is a diagram type, which is not defined in the UML, but more simple. It comes from
practice of Function Block programming.

4.8.6 Implementation of module interfaces

Not mentioned in chapter 4.8.1. Connections and inner modules, page 56, the module itself can
implement another interface for access. It is similar of the interface access agents, but associated
to the whole module. Then the module should only implement the requested interface operations.
The implementation should be only marked with the recommended @override annotation. That is
sufficient for the Java2Vhdl translator.

The implementation of interfaces of the whole module assumes, that the interface is unique for the
module. It is not possible to implement the same interface type, for example the basically Bit_ifc,
more as one. That’s why it is limited. The interface access agents are the more universal approach.

10. Any specific interface for a module
public interface Specific_ifc {
 @Fpga.BITVECTOR(16) int cmd ();
 boolean cmdMaster ();
}

11. Implementation of the specific interface inside the module
class MyModule implements FpgaModule_ifc, Specific_ifc {
 …..
 @override @Fpga.BITVECTOR(16) int cmd () { return this.process.valx; }
 …

Similar as in the chapter above described, only the expression after return delivers the result.

Figure 5: Interface Access Block diagram

page 66 4.8. Java sources for Modules

4.8.6. TestSignalRecorder in a module for Java based test

Each module may contribute to test outputs. The test outputs of the module is included
automatically, if the next shown inner classes are contained. It means for different test approaches
this content inside a module should be changed. But currently changing a module is not the best
approach for development of a whole component. That’s why, it’s better to include a flexibility
(amount of test outputs, select specific signals) to reuse the module inclusively this test output in
different situations.

It may be also possible to access specific inner variables of the module immediately from outside
written test operations. That is possible if the inner PROCESS classes of the module are public.
This is a worse organization because modularity is disregarded. But it is a workaround to fast
output till now non determined variables. The better and following work to do is, think about how it
is possible to do in a more universal form as intrinsic test access property of the module, for the
future.

A module class can contain:

12. Java: class for a FPGA module, Test support
public class TestSignals extends TestSignalRecorder { // (1)
 StringBuilder sbxy = new StringBuilder(); // (2)

 public TestSignals(String moduleName) { // (3)
 super(moduleName);
 }

 @Override public void registerLines () { // (4)
 super.clean();
 registerLine(this.sbxy, "xy"); // for this signal(s)
 }

 @Override public int addSignals (int time, int lenCurr, boolean bAdd) (5)
 throws IOException {
 MyModule thism = MyModule.this; // only for simple access
 this.sbxy.append(thism.q.var1 ? '1' : '_'); // (6)
 return this.sbxy.length(); // (7)
 }

 @Override public void endSignals (int lenCurr) throws IOException { // (8)
 this.pos = lenCurr;
 if(this.sbs !=null) {
 for(StringBuilder sb : this.sbs) {
 while(sb.length() < lenCurr) { sb.append(' '); }
 } }
 }

}

(1) This is a non static class, it should access to the environment class. The
org.vishia.fpga.testutil.TestSignalRecorder is the base class for entries in the test signal
outputs using the org.vishia.fpga.testutil.TestSignalRecorderSet. The organization of the test
output is described in chapter 4.10.3 The TestSignalRecorderSet to record test signals from
modules

(2) Each test signal output line is accumulated in a StringBuilder instance, need to be intialized
here. Of course you can have more as one line per module, it means more as one
StringBuilder.

(3) The constructor for this class is called as described in 4.10.3 The TestSignalRecorderSet to
record test signals from modules. The moduleName is given from outside, because it is
possible to have more instances of this module. The constructor can have more arguments
for flexiblity of the test signal recording, choice of test signals etc.

4.8.6. TestSignalRecorder in a module for Java based test page 67

(4) The modul’s TestSignalRecorder should register its line in the output if given signal
names. The line is designated in the output with the moduleName_signalName. Note that
because of more arguments on the constructor <3> it is possible to adapt the registrations of
lines.

(5) This operation addSignals is called from the TestSignalRecorderSet#addSignals(time),
which is called outside, see 4.11.3. The TestSignalRecorderSet to record test signals from
modules 83 The arguments are

 * time: the current simulation time step, possible to decide about output.

 * lenCurr: The numbers of character in the other StringBuilder till now. For example it is
possible to add a longer string if another module has also add a longer string for this test. It is
necessary to have the same length of all lines to hold it synchronous in the column meaning
to the time and to all other signals. It is recommended to add characters to get the same
length. The length is not influenced by the common organization. So it is possible to save
space to use it for next steps. But all in all, the positions in all StringBuilders should be
aligned.

 * bAdd this is true if any StringBuilder before has added somewhat. It means also that the length
of the own StringBuilder should be lesser than lenCurr, but it can be use simple as signal to
add also. It is possible that modules are related in their behavior. For example register first a
module which decides to add or not (for example using a specific signal as event for
recording), and all other follow.

(6) You can also add more signals in only one line using different characters. Then it is able to
distinguish. It is also possible to add any hex value for a vector or such, be carefully for the
length.

(7) The return value should be 0 if nothing is added, but should be the length of the longest own
StringBuilder (all may have the equal length) if anything was added.

(8) This operation is optional, the default implementation is shown. You can decide add some
more information, if any of TestSignalRecorder in the other modules has added more.
This opeation is called after all addSignals(…) of all modules are called.

page 68 4.9 Java source for an emulated VHDL module

4.9 Java source for an emulated VHDL module

There are two reasons to include a given VHDL file in the generated sources:

• a) Reuse existing VHDL-defined modules

• b) Often the tools for FPGA design have features to generate VHDL files for specific features, for
example for a RAM block.

For simulation on Java level, the functionality of the VHDL code should be emulated. For example
for a RAM module this may be simple. Also for more sophisticated behavior of the original VHDL
module you may only simulate a basically functionality to fulfill the interface to the module.

13. Template for the Java class definition of an emulated VHDL module:
@Fpga.VHDL_MODULE (vhdlEntity = "ModuleXy") public class VhdlModuleXy (1)
 implements FpgaModule_ifc {

 public static class Input { (2)
 public @Fpga.STD_LOGIC boolean Clock; (3)
 public @Fpga.STD_LOGIC boolean ClockEn;
 public @Fpga.STD_LOGIC boolean Reset;
 public @Fpga.STDVECTOR(7) int inDataXz;
 public @Fpga.STD_LOGIC boolean inDataX9;
 }
 public static class Output {
 public @Fpga.STDVECTOR(8) int outDataXy;
 }
 public Input input = new Input();
 public Output output = new Output();

 /**Example, RAM with 9 addresses, 8 data emulated ... */
 byte[] content = new byte[512]; (4)

 @Override public void reset () { (5)
 //todo may clean the RAM
 }

 @Override public void step (int time) {
 ...
 }

 @Override public void update () {
 this.output.outDataXy = this.content[this.input.inDataXz & 0x7f] & 0xff;
 }
}

(1) The class should marked with the annotation @Fpga.VHDL_MODULE (...) to detect, it is specific
to translate. The given argument value after vhdlEntity is the file name of the VHDL module.
It may be similar or the same as the java class/file name.

(2) This class should have an inner class Input as well as Output. This builds the interface to the
VHDL module generated in the COMPONENT … PORT definition. The same rules as for 4.7. Java
source for Pin definition FPGA class page 54 are valid. INOUT signals should be defined with
the same name in both Input and Output classes. For Java they are different variables. For
VHDL they can be get anyway, and set in a specific way usual with tristate properties using a
char in Java.

This Input and Output class elements should exactly follow the ENTITY … PORT (…) definition
in the given VHDL module, in names, types and the order.

(3) The VHDL module may have of course any clock input which should be wired usual with
Fpga.clk, see 4.8.3. Included VHDL modules page 60. Also any clock enable and reset
should be existing in the VHDL module which should be wired.

4.9 Java source for an emulated VHDL module page 69

(4) The class now may have logic to emulate. The template shows here only, how simple it is to
emulate a RAM.

(5) The reset(), step(time) and update() are only for Java execution (emulation). The update()
is immediately called after step, hence it is not important whether the code is written in step()
or update(). The output values are stored in the execution of the calling environment as
prepared values (D-Inputs) in the xyz_d reference, so that correct clocked usage is met.

The original VHDL file may have its head information as following:

entity ModuleXy is
 port (
 Clock: in std_logic;
 ClockEn: in std_logic;
 Reset: in std_logic;
 inDataXz: in std_logic_vector(6 downto 0);
 inDazaX9: in std_logic;
 outDataXy: out std_logic_vector(7 downto 0));
end ModuleXy;

page 70 4.10 Statements in Java and their translation to VHDL

4.10 Statements in Java and their translation to VHDL

Generally the statements for Java2VHDL are only located in the constructor of a
@Fpga.VHDL_PROCESS static final class MyProcess {…}. and in the input() and output()
operations of a module and the top level.

4.10.1 Variable definitions

Firstly regard differences “what is a variable” in sequential languages and in VHDL. In sequential
languages of course any variable is a storage in memory located either in a class (in heap) or in
the stack for temporary values.

In VHDL a variable which is set inside a PROCESS is represented by one or some FlipFlops, stored
similar as in sequential languages. But the usual known difference is: The variable is not set
immediately after the assignment, the new value is only valid after the clock, this is on the next
entry to the process. To considered this fact,:you should never use this.value inside an
expression (on right side). This is yet not checked by Java2VHDL translation, should be done
(RFC1).

In VHDL a variable which is set outside of a PROCESS has no representation in the FPGA. It is a
placeholder or such as a macro in C language (#define xy expression). This is also true for locale
variables defined in a process.

A variable definition can be done:

 • As final variable in a @Fpga.VHDL_PROCESS public static class . This variable is
represented in the FPGA with one or some FlipFlops.

 • As local variable in the @Fpga.VHDL_PROCESS constructor body. This builds in VHDL a VARIABLE
definition inside the VHDL PROCESS without representation in the FPGA, it is temporary.

 • As variable inside an inner class In or class Out. This variables are generated to a TYPE ...
RECORD definition and the appropriate SIGNAL definition. This assignment to this variables should
be done only in the input() and output() operations in Java. In the FPGA there are not
presented, it is temporary.

 • As variable inside class Input or class Output of the Pin description class file. This
variables builds the ENTITY … PORT definition of the VHDL file.

Variables on class level are not regarded for Java2VHDL. They can be defined for additional
calculations for tests. Hence, variables outside of a TYPE ... RECORD (simple variables in VHDL) are
never generated.

The Java variable type determines the VHDL type:

boolean bitValue; (1)
char stdValue (2)
@Fpga.STD_LOGIC boolean stdValue2; (3)
@Fpga.BITVECTOR(16) int bitVector; (4)
@Fpga.STDVECTOR(7) int stdVector; (5)
@Fpga.BITVECTOR(5) Enumtype enumval; (6)

bitValue: BIT;
stdValue : STD_LOGIC;
stdValue2 : STD_LOGIC;
bitVector : BIT_VECTOR(15 DOWNTO 0);
stdVector : STD_LOGIC_VECTOR(6 DOWNTO 0);
enumVal : BIT_VECTOR(4 DOWNTO 0);

(1) A simple boolean with the values true and false is always a simple BIT variable.

(2) A STD_LOGIC variable which needs also specific states as Tristate are represented in Java
with a char. The value of the char should be ’0’ ’1’ or ’Z’, The other values of STD_LOGIC
are non presented in Java2VHDL, because only a functional simulation is done. The other
values are important in VHDL for timing simulation.

(3) boolean can also be translated to STD_LOGIC, but then only the values ’0’ ’1’ are usable.

(4) A BIT_VECTOR is presented by an int with at least 32 bit or a long with 64 bit. But only bits

4.10.1 Variable definitions page 71

starting right side with 0 are supported also in VHDL DOWNTO 0. In Java the int value is not
automatically mask if you have overflows on addition or shift operations. You should mask if
necessary in an expression with a value starting with m_ (“mask”). This operation is not
translated to VHDL, not necessary. Using specific operations for shift and select bits do the
necessary mask, so that the int value is always clean for test in Java (follows the VHDL
behavior).

(5) It is the same for STD_LOGIC_VECTOR. Note that some operations can be done in VHDL only with
STD_LOGIC_VECTOR. Hence you should use it. On assignment and access also an automatic
conversion is done.

(6) An enum value in Java is interesting especially for state machines. See todo.

4.10.2 Assignments

Assignments which are translated to assignments in VHDL are contained in:

 • the @Fpga.VHDL_PROCESS constructor body. There you should only assign the own inner class
variable written with this.name = or the local defined variables. You shoud never assign
other variables than the own class variables. This follows the rule in VHDL: Each variabe
which is assigned in a PROCESS should not assigned any where other again. The rule, only
assign the own class variable, helps for clarity. The variables which are handled in one PROCESS
are combined in one RECORD in VHDL.

 • the input() operation of the Java module. There values to an In in instance in a sub module
should be set, typically written as this.modules.subModuleXy.in.variableXz = …. It is the non
referencing variant for value connection). The destination for this assignment in VHDL is the
appropriate SIGNAL … RECORD variable. They are not presented in the FPGA, it is temporary.

 • the output() operations of the Java module. The destination variable should be located either
in the own Out out instance for the non referencing variant for value connection. Or it can be
also located in the Output output instance of the ioPins module of the top level class. That
are immediately the output pins of the FPGA. This is true especially for the top level class as
well as also in module classes. Inner module classes should know a reference to the ioPins
in there Ref inner class (ioPins should be referenced). This should be done only for specific
main modules of a FPGA, not commonly.

page 72 4.10 Statements in Java and their translation to VHDL

4.10.3 Expressions, Operations

Expressions are either the right side of an assignment statement, or it is used as boolean
expression for conditions.

First considerate the type of an expression. It depends first on the type of the operands. But
operators change the type, as known in all programming languages, also in VHDL, also in Java.

In VHDL especial it is distinguish between a BIT type of value, a STD_LOGIC or the boolean type
which is used in conditions in VHDL. In Java all three are the same, it are the boolean type. Some
adaptions are done, see next.

Operators and preference

In java there can be used:

For the example, it is set:

14. Java, Example Variables for expression:
 @Fpga.VHDL_PROCESS public static class Val { // (1)
 final boolean bit1, bit2, bit3; // (2)
 final @Fpga.STD_LOGIC boolean lg1, lg2, lg3; // (2)
 @Fpga.STDVECTOR(16) public final int val1, val2, val3;
 @Fpga.BITVECTOR(8) public final int bvec1, bvec2;

15. Simple boolean expressions in Java:
 this.out.out1 = this.val.bit1 & this.val.bit2;
 this.out.out3 = this.val.bit3 && this.val.bit2;
 this.out.out3 = this.val.lg1 && this.val.bit2;
 this.out.olg1 = this.val.lg1 && this.val.bit2;
 this.out.out1 = this.val.bit1 & this.val.bit2 | this.val.bit3;

16. The result after translation is:
mdl1_Out.out1 <= mdl1_Val.bit1 AND mdl1_Val.bit2 ;
mdl1_Out.out3 <= mdl1_Val.bit3 AND mdl1_Val.bit2 ;
mdl1_Out.out3 <= TO_BIT(mdl1_Val.lg1 AND TO_STDULOGIC(mdl1_Val.bit2));
mdl1_Out.olg1 <= mdl1_Val.lg1 AND TO_STDULOGIC(mdl1_Val.bit2) ;
mdl1_Out.out1 <= (mdl1_Val.bit1 AND mdl1_Val.bit2) OR mdl1_Val.bit3 ;

 • & and && can both used for java boolean, it is AND in VHDL, same as for | AND ||, it’s OR.

 • Conversion between BIT and STD_LOGIC are done in the expression.

 • Preference is corrected by (). In VHDL AND is not preferred to OR, in Java & is preferred to |.

17. Comparison expressions in Java to set BIT and STD_LOGIC boolean:
this.out.out5 = this.val.bvec1 == 0x45;
this.out.out6 = this.val.val1 < this.val.val2
 && (this.val.bvec1 & this.val.val1) > 0x0005;

The result after translation is

mdl1_Out.out5 <= '1' WHEN mdl1_Val.bvec1 = x"45" ELSE '0';
mdl1_Out.out6 <= '1' WHEN mdl1_Val.val1 < mdl1_Val.val2
 AND (((mdl1_Val.bvec1 AND TO_BITVECTOR(mdl1_Val.val1))) > x"0005") ELSE '0';

 • The comparison results in a boolean type in VHDL. That cannot assigned nor to BIT nor to
STD_VALUE. Hence, a WHEN .. ELSE construct is translated to VHDL. Inside a PROCESS the WHEN
.. ELSE is not admissible. For that a IF .. ELSE results after translation.

 • & in Java with int variables which are different type are possible, an automatic conversion is
resulted. Same is also for the other bit operations.

4.10.3 Expressions, Operations page 73

18. Numeric operations in Java 2 VHDL
 this.out.oVal1 = this.val.val1 + this.val.val2;
 this.out.oVal2 = this.val.val1 + this.val.bvec2;
 this.out.oVal3 = this.val.bvec1 – this.val.bvec2; RFC2

mdl1_Out.oVal1 <= mdl1_Val.val1 + mdl1_Val.val2 ;
mdl1_Out.oVal2 <= mdl1_Val.val1 + TO_STDLOGICVECTOR(mdl1_Val.bvec2) ;
mdl1_Out.oVal3 <= TO_STDLOGICVECTOR(mdl1_Val.bvec1 - mdl1_Val.bvec2); ERROR

 ● + and – are admissible in VHDL only with STD_LOGIC_VECTOR. The last line is a mistake yet in the
Java2VHDL (RFC), but you should use a @Fpga.STDVECTOR for the input. The conversion in the
second line is done because the expression starts with a STD_LOGIC_VECTOR-type. For that the
second operand is converted to the current expression type.

 ● * and / are not supported. An FPGA does not support more complex arithmetic by
standard features. For multiplication you may include a multiplication module.

 ● But as RFC it should be simple to translate a multiplication with a simple less constant value
and a division by a power of two to the proper + and shift (or better bit select) operations.
They can be routed in a simple way. For example val * 5/8 should be a proper requested
operation which can be translated. Whether also val * 0.625f wíll be correct translated –
may be also possible.

19. Shift operations
 this.out.bVal2 = this.val.bvec2 >> 2;
 this.out.bVal3 = (this.val.val1 << 3) + 5; RFC2

mdl1_Out.bVal2 <= mdl1_Val.bvec2 SRL 2 ;
mdl1_Out.bVal3 <= TO_BITVECTOR(((mdl1_Val.val1 SLL 3)) + 5); ERROR

 ● Also shift operations are translated. But VHDL has less problems with itself, shift operations
works only for BIT_VECTOR and numeric operations works only for STD_LOGIC_VECTOR. But this
should be clarified in the future from Java2VHDL, with necessary conversions.

page 74 4.10 Statements in Java and their translation to VHDL

4.10.4 Operands

For left side Operands, the variable to assign, see chapter 4.10.2 Assignments page 71

Operands in expressions can be gotten in java with the following references:

20. Operand access in a constructor of a process
@Fpga.VHDL_PROCESS Val(int time, Val z, Ref ref, ModuleXY thism) { // (4)
 boolean localVar1 = ref.ioPins.input.reset_Pin; // (5)
 this.bit1 = z.bit1 & localVar1 & ref.mdlXx.getSpecValue(); // (6)
 this.bit2 = thism.pCE.ce; // (7)
 this.val1 = ref.mdlXx.getConstValue(); // (8)

produces the following VHDL lines

mdl1_Val_PRC: PROCESS (clk) – (4)
 VARIABLE localVar1 : BIT; – (5)
BEGIN IF(clk'event AND clK='1') THEN
 localVar1 := reset_Pin; (5)
 mdl1_Val.bit1 <= mdl1_Val.bit1 AND localVar1 AND module2_Qx.bit1 ; (6)
 mdl1_Val.bit2 <= mdl1_PCE.ce; (7)
 mdl1_Val.val1 <= TO_STDLOGICVECTOR(OtherModuleXz_getConstValue); (8)

(4) The following examples for access are inside a constructor describing a PROCESS

(5) Delaration of a local process variable as local variable in constructor. It is not final because
also in VHDL it can be assign in several branches. The last seen assignment is the used
value, adequate to Java. The initial assignment is only the initial one.

Since you use ref…. here, the resolution of the access is created for VHDL.

(6) The access to z…. is the value of the last state. In VHDL it is intrinsic to access the last state
in a PROCESS, hence nothing specifics is written there.

In a processes constructor you should never access this.var because it is the value of the
next step. In VHDL adequate z.var is used. The simulation will be faulty using this.val.

The next term uses ref… hence it is resolved to the implementation of the interface access in
Java.

(7) This example uses via thism… the access to another inner class value, which is another
RECORD. It is adequate resolved and translated.

(8) The getConstValue() is implemented return 0x3456, a constant value. Hence, a variable is
defined in VHDL:

CONSTANT OtherModuleXz_getConstValue : BIT_VECTOR(15 DOWNTO 0) := x"3456";

This variable is accessed. But because it is a simple value, it is typed with the BIT_VECTOR.
Hence the adaption to the assigned variable type is generated automatically.

21. Access in output() or input()
TODO

4.10.4 Operands page 75

22. Operands for constants
this.ct = 0b1001; // set ct to 9 (1)
this.ct = 9; //faulty
this.val = 0x0000; (2)
this.val = 0; // faulty
this.bit1 = true; (3)
this.olg1 = ’Z’; (4);
this.bit2 = this.olg1 == ‘Z’; (5)

(1) For bit or STD_LOGIC_VECTOR constants you can write the value is binary constant. The
number of digits should match exact the number of bits in the vector.

Note: This is in version 2023-03. RFC2 is, detect destination type and convert automatically
from the numeric given value.

(2) If the number of bits is able to divide with 4, you can also use the hexa representation, but
here also with the exact number of digits.

(3) Assignment of true and false to BIT or STD_LOGIC in Java presented as boolean is proper.

(4) For STD_LOGIC presented as char in Java you can use the known character which are also
proper for VHDL: ’1’ ’0’ ’H’ ’L’ ’Z’ If you use ’U’ ’X’ ’W’ ’-’ then you should think about what it
means for your Java test. All character values are translated to VHDL.

(5) Writing a comparison with a constant value, here especially for a char represented
STD_VALUE produces a true or false in VHDL, as written. It is cast to the destination type if
necessary..

page 76 4.10 Statements in Java and their translation to VHDL

4.10.5 Special operations for bit vectors

VHDL knows immediately access to bits written as

 … myVector(13 DOWNTO 6) ...

This accesses to the defined bits and it presents a vector here with 8 bits.

In Java this might be written as
 … ((myVector >>6) & 0xff)

delivering the same result. But this might be not proper obviously and it is also not simple to
correct translate. It is not obviously what is ment. Because it may be also translated to

 … ((myVector LSR 6) AND x”ff”) ...

which presents a vector of the original length of myVector.

It is better to use operations in Java with a dedicated semantic. They are:

23. Bit vector operations
Fpga.getBit(vector, 5) (1)
Fpga.getBits(vector, 13, 6) (2)
Fpga.getBitsShl(vector,15, false) (3)
Fpga.getBitsShr(true, 15, vector) (4)
Fpga.concatBits(16, vec1, 8, vec2) (5)

vector(5)
vector(13 DOWNTO 6)
vector(14 DOWNTO 0) & ('0')
('1') & vector(15 DOWNTO 1)
vec & vec2

In the examples above the numbers should be numbers, but the number itself is exampleness.

(1) Access to one given bit in a vector, resulting type is BIT or STD_LOGIC

(2) Access to some bits, left and right bit is given. Resulting same type with new length.

(3) Shift a vector 1 bit to left, with given number of bits and given bit0

(4) Shift a vector 1 bit to right, with given right bit and the number of bits shifted

(5) Concatenation of any vectors. This is a combination of bit selection and concatenation:

24. concatBit variations
Fpga.concatBits(16, this.out.oVec81, 8, this.out.oVec82); // (1)
Fpga.concatBits(16, this.out.oVec81, 8, Fpga.getBits(this.out.oVec82, 6,1)); // (2)
Fpga.concatBits(16, this.out.oVec81, 10, this.out.oVec82, 6, this.out.oVec83); // (3)
Fpga.concatBits(16, 0b000, 13, this.out.oVec81, 5, this.out.oVal4); // (4)
Fpga.concatBits(16, this.out.oVec81, 5, this.out.oVal4); // (5)

Fpga.concatBits(16, 0b000, 13, this.out.oVec81, 5, this.out.oVal4); (4)
Fpga.concatBits(16, this.out.oVec81, 5, Fpga.getBits(this.out.oVec82, 6,1)); (3)
Fpga.concatBits(16, this.out.oVec81, 6, Fpga.getBits(this.out.oVec82, 7,2));

mdl1_Out.oVec81 & mdl1_Out.oVec82 (1)
mdl1_Out.oVec81 & "00" & mdl1_Out.oVec82(6 DOWNTO 1) (2)
mdl1_Out.oVec81(5 DOWNTO 0) & mdl1_Out.oVec82(3 DOWNTO 0) & mdl1_Out.oVec83(5 DOWNTO 0) (3)
"000" & mdl1_Out.oVec81 & TO_BITVECTOR(mdl1_Out.oVal4(4 DOWNTO 0)) (4)
"000" & mdl1_Out.oVec81 & TO_BITVECTOR(mdl1_Out.oVal4(4 DOWNTO 0)) (5)

mdl1_Out.oVec81 & "00" & mdl1_Out.oVec82(6 DOWNTO 1)); (1)
"000" & mdl1_Out.oVec81 & TO_BITVECTOR(mdl1_Out.oVal4(4 DOWNTO 0))); (2)
"000" & mdl1_Out.oVec81 & mdl1_Out.oVec82(6 DOWNTO 1)(4 DOWNTO 0)); (3)
"00" & mdl1_Out.oVec81 & mdl1_Out.oVec82(7 DOWNTO 2)); (4)

The 1th, 3th etc. value is a simple number of bit positions. The next argument is a vector. If the
vector is longer than the difference to the next bit position, a sub vector is built, right aligned. If the
vector is shorter, some 0 bits are included.

(1) This is a simple form, two vectors are concatenated with the original length. The length should

4.10.5 Special operations for bit vectors page 77

be known in Java.

(2) A vector can be built also from a getBits() access to sub bits. In this example it is combined
with padding 0-buits, to accomplish the 8th position.

(3) This is a combination to access sub bits from three vectors. The bit positions 16, 10 and 6
determines the selection of sub bits in the vectors, but it is right aligned.

(4) Th 3th Vector is shortened because it has lesser bits, the 2th vector has exact its 8 bits, and
left side it is manually padded with 0. This is obviously.

(5) It produces the same result because of automatic padding. The user should decide

(2) This example shortens the 3th vector. The left vector is added manually with a constant to
padding.

Secondly the 3th vector is of BIT_VECTOR type whereas the 2th vector is a
STD_LOGIC_VECTOR type. The type of the expression follows the first given vector from left.
To fulfill concatenation the right vector is converted.

(3) This line results in an error in VHDL, the problem is shorten in combination with an bit select
operation. You should select the correct number of bits as done in (4).

(4) todo more concise examples

page 78 4.11. Test organization on Java level

4.11. Test organization on Java level

One of the benefit of the Java2VHDL approach is, it is possible to make elaborately functional tests
on Java level to evaluate the logic in the FPGA.

It is common known that the effort for test is often two times more as the functionality for the
product itself. So it can be seen also here. Why is it so?

The test can be done of course in practical usage. It should be do so. Then you see practical
effects of the functionality, some stuff may be worse. But then you must think about why, the effort
is high, and maybe your costumer is not happy.

Hence, the test conditions should be simulated before the product is ready, the tests can be done
in software on the desk of the developer, and the advantage is: The developer can look to details
inside the logic. The effort to simulate the outer environment may be high to get expressive test
results.

The test environment can be free programmed in Java using all capabilities, for example reading
test stimuli data from Excel sheets or other result files.

4.11.1. General execution order for java execution of the FPGA functionality page 79

4.11.1. General execution order for java execution of the FPGA functionality

The Java execution starts in the static void main(String args[]){…}

You can provide some arguments from a outside test environment which calls the Java program for
example with different stimuli for a repeated test after changes, but you can also organize different
tests in Java itself in the main(…) routine.

It means, you can call different sub routines for test and calling the FPGA execution.

In this different sub routines, or only in the one main(…), some instances of classes which
simulates the environment, can be instantiated and initialized.

If you do it simple, you should stimulate only the inputs of the only one FPGA with simple signals. If
the test is done more elaborately (in progress of development) you may have more as one FPGA
to test co-working, you should emulate the behavior of a embedded control adapted to the FPGA.
Note that you can also organize co-working with the original embedded control software maybe in
C language, with connection via Socket interface or shared memory: The embedded software may
also work in PC, can have a socket interface (not complicated on PC simulation), and socket
connection in Java is also simple. So you get signals from the embedded control with original
functionality to use for your FPGA test.

Java: Test main(…)
public static void main (String args) {
 MyTest thiz = new MyTest(args); // (1)
 TestOrg test = new TestOrg("Test_MyTest_All", 3, args); // (2)
 try {
 thiz.executeTest_A(test); // (3)
 }
 catch(Exception exc) { // (4)
 System.out.println(exc.getMessage());
 test.exception(exc); // (5)
 }
 test.finish(); // (6)
}

(1) This schema shows execute more tests with one given argument set args, maybe used or
not. The instance of the main test class is initilaized.

(2) The ../../../Java/docuSrcJava_vishiaBase/org/vishia/util/TestOrg.html is a meanwhile proven
concept a little bit similar as Google test but it is better.

(3) Here you can execute more as one routine for each test one after another.

(4) This is only a general catch for unexpected errors.

(5) The test-exception(..) writes an exception info and the message, that the test was
aborted.

(6) The test.finish() now closes the test organization and writes end information.

https://www.geeksforgeeks.org/gtest-framework/

page 80 4.11. Test organization on Java level

But see now one execution operation. It shows the simplest way is, only stimulate inputs with
simple functionality.

Java: one test routine calls the FPGA step
executeTest_A(TestOrg testParent) {
 TestOrg test = new TestOrg("testXy", 6, testParent); // (1)
 MyFpga fpga = new MyFpga(); // (2)
 fpga.reset(); // (3)
 TestEnvironment testEnv = new TestEnvironment(...); // (4)
 testEnv.reset(fpga);
 TestSignalRecorderSet outClk = new TestSignalRecorderSet();
 initTestSignalRecording() // (5)
 // initialize some pins as delivered from hardware from begin (6)
 fpga.modules.ioPins.input.reset_Pin = false; // lo active from begin
 int time = 0;
 while(time < 10000) { // does here 10000 clock edges // (7)
 if(this.time == 50) {
 fpga.ioPins.input.reset_Pin = true; // hi passive reset (8)
 }
 testEnv.setFpgaPins(fpga, time); // (9)
 fpga.step(time); // Simulation of FPGA (10)
 fpga.update();
 fpga.output();
 testEnv.step(time, fpga); // simulation of the test environment (11)
 signalRec.addSignals(time); // (12)
 } //while
 // time test is finished
 signalRec.output(); // (13)
 testEvaluation(test, signalRec); // (14)
 test.finish(); // (15)
}

(1) For the test evaluation build a sub TestOrg instance, closed with <15>

(2) The FPGA top level is initialized, see chapter 4.6 Java source for top level FPGA class.
Alternatively you can instantiate the FPGA (or more as one) outside, reuse it and call

(3) fpga.reset() to bring the FPGA after other tests back in the reset state, it is adequate
switch off power and switch on again to start the test with a clean FPGA. Note that stimulate
the reset pin, see <6> and <8> may not force a clean FPGA, because it depends on the
FPGA content (VHDL) itself.

(4) Also, allocate or initialize your specific test environment which may be simple for the first test.
This can now influence FPGA pins as initial state.

(5) The TestSignalRecorderSet handling is explained in 4.10.3 The TestSignalRecorderSet to
record test signals from modules

(6) This is a simple possibiity to determine signal pins on begin of the test, here the low active
reset is set to low, as a reset logic may do on power on or with a outer button.

(7) The int time counts the clock steps and helps to formulate stimulis signals and information
for test signal outputs. It is also used to determine the test after a time. Of course the test can
be determined depending form some signals from the FPGA or from the test environment.

(8) The FPGA pins can be set immediately simple depending from the time, here done for the
rest pin set it high inactive after a dedicated time …

(9) Or the FPGA pins can be determined from an operation in the test environment class which
can be more comprehensive.

(10) step(time), update() and output() for the top level of the FPGA should be executed in
each time step. It is the simulation of the FPGA functionality.

(11) The adequate is done for the environment simulation. Note that this can be also written as

4.11.1. General execution order for java execution of the FPGA functionality page 81

FPGA logic if it is hardware. But is can be more simple if it should only produce inputs for the
FPGA. Possible here also, use measurements from real behavior for the input of the FPGA.
But also the dependence from the state of the FPGA may be important.

(12) Test signal recording is called in any step. It may be to save run time in Java that this is called
only after some steps, for example if signals should be recorded lesser, for example only if a
'clock enable' signal inside the FPGA is active. It may also depend on test cases which signal
recorder is used if you have prepared more as one. Often for general tests all signals in any
clock edge should be gathered. But if the general logic works, only lesser signals are
gathered.

(13) After end the test run in the while { … } loop the test signals may be output to a file to visit it
manually. Because there are lines with time in columns, the output cannot be done during the
running test, only on end. But for debugging you can visit the content of the StringBuilder.
<14> A routine for test evaluation may analyze the content of the StringBuilder of the
signal recorder, either to immediately compare with a pattern, or to compare the significance
of the content. It should write information in the TestOrg instance.

(14) This is the TestOrg#finish() which writes some information to console or to a file for
evaluation of the test result.

page 82 4.11. Test organization on Java level

4.11.2. Execution order inside the FPGA for the test

Lets have first a remark to execution time.

The execution of Java is very fast. Tests with more as 1’200’000’000 steps are done for 12
seconds test run with a clock of 100 MHz (10 ns). It works in the simulation only a few minutes.
This is not primary expectable, because there are 1200000000 calls of new for the process
instances of some modules. But generally, new is a cheap operation if the memory is sufficient. The
memory is sufficient, if you need for example 3 kByte for your data, you need only 3 GByte for one
million steps. Then the garbage collector can work to clean up, but all instances are less and one
after another, so that also the garbage collector has not to much to do. It need milliseconds, no
more.

You can save calculation time, if you regard, that some processes works only with a clock enable
signal. Also in the FPGA 10 ns are less, and the clock enable simply the timing. If you know the
functionality of the clock enable, you can use it to call step(…) not in any simulation step, instead
for example only any 10th time, for specific processes only which runs with a dedicated clock
enable .

That can all regarded in Java level if the simulations grows and get slowly. But you should do
carefully such things, think about the functionality, to avoid differences between the really
functionality in the FPGA hardware and your test result.

One remark additionally. Of course the tests are only functional tests without regarding the timing
in the FPGA. But the timing should be met anyway, see chapter 3.1.2 Timing relations and

The operations for step() and update() as well as reset() and output() are also presented in the
chapter Error: Reference source not found page Error: Reference source not found. They are
important especially for the test.

The step(int time) {…} operation can also contain time tests of signals to check the timing
constraints, see chapter

4.11.3. The TestSignalRecorderSet to record test signals from modules page 83

4.11.3. The TestSignalRecorderSet to record test signals from modules

The org.vishia.fpga.testutil.TestSignalRecorderSet is a container which holds all
org.vishia.fpga.testutil.TestSignalRecorder from all modules. But it should be initialized with the
modules. See also 4.11.1. General execution order for java execution of the FPGA functionality,
page 79, there the code template for 'one test routine calls the FPGA step':

Java: initializing of the TestSignals for the whole simulation.
void initTestSignalRecording () {
 this.outClk = new TestSignalRecorderSet(); // This is to show all te...
 this.outClk.registerRecorder(sim.fpgaA.modules.moduleXy.new TestSignalsFrame("A-...
 this.outClk.registerRecorder(sim.fpgaA.modules.moduleXy.new TestSignalsAll("A-Xy...
 this.outClk.registerRecorder(sim.fpgaA.modules.moduleAb.new TestSignals("A-Ab"));
}

This is only a simple example. The FPGA may (only) have two modules. The non static inner
classes derivend from TestSignalRecorder are instantiated here, with the .new operator given
with the module instance reference as it is necessary to initialize non static inner classes from
outside. The initialized classes get the reference to this named outer class which is necessary by
this outerIntance.new(…) construct, may be not anytime known by occasionally Java
programmers.

In this example it is also demonstrated that the moduleXy has two inner classes for
TestSignalRecorder with different signals. Yet it can depend on test conditions which recorder is
used, or both as shown here. The argument of the TestSignalRecorder constructor is the module
name as it is written before the internal signal names, this is determined also here.

See Error: Reference source not found page Error: Reference source not found

https://vishia.org/Fpga/docuSrcJava_vishiaFpga/org/vishia/fpga/testutil/TestSignalRecorder.html
https://vishia.org/Fpga/docuSrcJava_vishiaFpga/org/vishia/fpga/testutil/TestSignalRecorderSet.html

page 84 4.11. Test organization on Java level

4.11.4. Evaluation of the recorder test signals

After test the StringBuilder in the TestSignalRecorder are filled with information.

Firstly you can visit it manually, writing in a File as mentioned in 4.11.1. General execution order for
java execution of the FPGA functionality page 79 point (13). That is important to look on new
functionality and study the correctness.

But if you want to run repeated tests only for checking, nothing was wrong by made changes, the
manually comparison is expensive and error-prone. You don’t may see important faulties.

That’s why for such approaches automatically comparison and automatically test executions are
proper.

The simplest for is, compare with the last given results – should be the same. But some times the
outputs depends from not relevant input changes. The stupid comparison returns errors, whereby
only maybe a little bit other timing is given which is not so relevant. Of course because of that the
comparison pattern can be adapted, after elaborately study of the correctness. That is costly.

Sometimes only a sequence should be checked: Comes an output because of an input in a given
time span or not. Then more sophisticated analyzes of the depending output lines can be done.

For example you have different automatically tested input stimuli, with different width of signals,
and your test result should be: The outputs should follow the width. You do not test pattern of
outputs with pattern of inputs, you should test functional requirements from inputs to outputs. For
example, output should follow input with given delay depending of a parameter.

Maybe also, you don’t want to compare all detailed signals, only want to see deterministic outputs.

But all that is proper able to program on Java level.

The template for doing checks with the output is:
Test test = new Test
 TestOrg test = new TestOrg("testName", 6, testParent);
 … execute the functionality
 boolean bOk = true;
 for(int ix = 0; ix < this.txData.length; ++ix) {
 bOk &= (this.rxData[ix] == this.txData[ix]);// compare tx with rx for own test
 }
 test.expect(bOk, 7, "rxData[] should be equal as txData[]");
 test.finish();

This example shows the check of a result of a complex simulation with two FPGAs and also a
simulated SPI interface of a controller (SPI = Serial Peripheral Interface which is usual given on
controller chips and often used for FPGA communication). The test is met if the received data of
the other FPGA are equal to the transmitted ones, whereby different conditions were be given.
Details are not tested here. It is an end test.

Details may be manually viewed, or tested with the adequate effort.

4.11.4. Evaluation of the recorder test signals page 85

page 86 4.12 Checking time between FF groups

4.12 Checking time between FF groups

Timing constraints are essential for routing because the place & route tool of the FPGA
implementation should know which signals can have a longer path. Usual not all path can met the
time between two clock edges, if you have for example a FPGA system clock of 100 or 200 MHz.

The timing constraints are also checked on Simulation in Java.

4.12.1 How to set timing constraints for place and route tool

For Lattice Diamond you can write in the lpf file (constraint file) the following information about
timing:

25. Timing constraints for Lattice Diamond
PERIOD PORT "clk" 10.000000 ns ; (1)
DEFINE CELL GROUP "Ce0" (2)
"*CE0.*" (3)
"data*"
;
DEFINE CELL GROUP "Ce7" (2)
"*CE7.*"; (3)

MULTICYCLE FROM GROUP "Ce0" TO GROUP "Ce0" 10.0 X; (4)
MULTICYCLE FROM GROUP "Ce7" TO GROUP "Ce7" 10.0 X;
MULTICYCLE FROM GROUP "Ce0" TO GROUP "Ce7" 7.0 X;
MULTICYCLE FROM GROUP "Ce7" TO GROUP "Ce0" 3.0 X;

(1) Here first the clock period is defined.

(2) A CELL GROUP is a group of Flipflops which switches with the same clock enable signal. The
name follows here the clock enable signal, here Ce0.

(3) The members of a group are names of the registers able to see in the Netlist View. The
names are built after the routing process as names of the implementation in the flattened
view to the real FPGA content. This names can be written with wildcards, of course, important
for register groups.

This names follow more or lesser the names in the VHDL sources. If you have modular VHDL
sources, the names are sometimes not very well predictable. But for the flattened VHDL file,
which is produces by Java2VHDL, the name follows simply the SIGNAL names of the TYPE
… RECORD definitions. This SIGNAL names are translated from Java2Vhdl using the module
name in the Top level, maybe nested module names and then the name of the inner Process
class type. This are your names in Java. Hence they are predicted.

If you have your own naming conventions, for example using the suffix “CE0” for all SIGNAL
records, which are determined in PROCESSes by a “CE0” clock enable, then you can use
this convention for a simple build of the group. But this is a special solution, not applicable for
large designs with different modules. It presumes a regularity of name schemes, which may
not be possible in any case.

The better solution is using the automatic generated part of the constraints from the
Java2Vhdl converter, which lists all Flipflop groups following the detected clock enable signals
with the Interface usage CeTime_ifc, see following chapters.

(4) This line clarifies, that the time between the Flipflops of this GROUP is the given factor longer
than the clock PERIOD. Because the clock enable signal of all FlipFlops of this GROUP
comes with this period, it is proper.

Unfortunately, the names for Cell groups should be existing names in the routed design. It would
be better, the original source names may be usable. It means VHDL should have a language

4.12.1 How to set timing constraints for place and route tool page 87

feature to associated flipflop groups.

The Java2VHDL translator has the advantage, that the names of the routed ”CELL” can follow
simply the SIGNAL names of RECORD in VHDL, if the VHDL is the top level module. Because the
translating from Java2VHDL is done in a flattened way, some modules which are aggregated and
hold in different module files in Java are translated to only one top level (or sub level) VHDL file, it
is usual possible to predict the names of the Cells in the routing design. Hence, the association
from PROCESS class variables to the time cell groups can be done by automatically, see next
chapter.

But unfortunately, if the router discardes some FlipFlops because their outputs are not used
(optimization), the translator produces a CELL GROUP name which is not existing in the routed
design. Then the Diamond tool ignores the whole cell group, only visible as warning on routing
logging. This is a disadvantage or the router and can be fixed there. “Non existing signal names
should not disable the whole CELL GROUP built with them”. This is tested with Lattice Diamond
tool 3.12.0.240.2.

It means the tuning between the automatically generated DEFINE CELL GROUP with the used plf
file should be made manually, with checking whether all names are existing in the net list. That is
not a sophisticated work, and also, it can help to detect unexpected optimized blocks. If you have
such one, you should mark it on Java level.

RFC3 for Java2VHDL: An annotation is necessary to mark PROCESS classes which should not be
translated to VHDL, for example because there are used only for specific simulation situations.

See chapter 7. Requests for Change (RFC) for the Java2Vhdl tool page 114

The output produced in the file given with option -oc:path/to/constraint.ext: looks like

DEFINE CELL GROUP "mdl1_CE0"
"ioPins_Output_data.*"
"mdl1_Q_CE0.*"
;
DEFINE CELL GROUP "mdl1_CE7"
"mdl1_Val_CE7.*"
;

It should be merged in the used constraint file.

page 88 4.12 Checking time between FF groups

4.12.2 Association between PROCESS variables and time GROUPs

The next pattern is related to chapter 4.8.2. Inner class for records and process page 58:

It is a good decision if all values in a @Fpga.PROCESS inner class switches with only one clock
enable. Then all Flipflops can be assigned to one time GROUP in constraints.

26. Start of PROCESS static class with time_ variable
 @Fpga.VHDL_PROCESS public static class Q_CE0 { // (1)
 public final CeTime_ifc time_; // (2)

(2) The process class should contain this variable. It should be set in the constructor with the
source of the clock enable signal (5), (6):

27. Start of PROCESS constructor with ce() condition and time GROUP selection
 @Fpga.VHDL_PROCESS Q_CE0(int time, Q_CE0 z, Ref ref, ModuleXY thism) { // (5)
 this.time_ = thism.srcCE0; // (6)
 if(thism.srcCE0.ce()) { // (7)

 } else {
 // nor more relevant statements to change process variables (8)
 }

(7) This is the essential statement to associated this PROCESS class to the time GROUP which is
defined with the CeTime_ifc. The Java2Vhdl translator detects, that the reference
thism.srcCE0 is type of this interface. The implementing instance contains information about
the time GROUP.

(8) The if...else should be the only one branch which sets the process variables with new values.
The else branch should only contain this.varx = z.varxy; which has no contribution for the
variables in VHDL. Or it contains a throw new IllegalStateException(); as shown in
chapter 4.8.2. Inner class for records and process page 58.

Now have a look to a PROCESS class which defines the CE signals:

28. Example for build to ce signals
 @Fpga.VHDL_PROCESS public static class PCE {
 final boolean ce, ce7;
 final @Fpga.STDVECTOR(4) int ct;
 final int time_ce, time_ce7;
 PCE(){
 this.ce = this.ce7 = false; this.ct = 0;
 this.time_ce = this.time_ce7 = 0;
 }
 @Fpga.VHDL_PROCESS PCE(int time, PCE z, Ref ref, ModuleXY thism) {
 if(Fpga.getBits(z.ct, 3,2) == 0b11) {
 this.ct = 0b1000; // counts 8..0,-1, 10 times.
 this.ce = true; // (1)
 this.time_ce = Fpga.checkTime(time, z.time_ce, thism.srcCE0.period()); // (2)
 } else {
 this.ct = z.ct -1;
 this.time_ce = z.time_ce;
 this.ce = false;
 }
 if(z.ct == 0b0010) {
 this.ce7 = true;
 this.time_ce7 = Fpga.checkTime(time, z.time_ce, thism.srcCE7.period()); // checks the...
 } else {
 this.ce7 = false;
 this.time_ce7 = z.time_ce7;
 }
 }
 }
 protected PCE pCE = new PCE(); private PCE pCE_d;

4.12.2 Association between PROCESS variables and time GROUPs page 89

It is only an example. The two clock enable signals comes from a counter which counts from 8
down to -1. It is also possible and sensitive, that a clock enable is related to an input signal which
has a significant period. A filter (an input clock enable synchronization) may clarify that some
aberration may shorten or elongate the clock enable period, but in a related kind. The clock enable
period for a signal which comes for example from a 10 MHz input can vary then between 9 .. 11
system clock ticks of 100 MHz.

The more important parts for timing constraints are the access agents to the clock enable. For that
the interface org.vishia.fpga.stdmodules.CeTime_ifc is given:

29. Access to clock enable with time definitions:
 @Fpga.IfcAccess public CeTime_ifc srcCE0 = new CeTime_ifc() { // (1)
 @Override public boolean ce () { return ModuleXY.this.pCE.ce; } // (2)

 @Override public int time () { // (3)
 return ModuleXY.this.pCE.time_ce;
 }
 @Override public String timeGroupName () { return "CE0"; } // (4)

 @Override public int period () { return 10; } // (5)
 };

(1) This anonymous interface implementation of CeTime_ifc is detected by Java2VHDL, can be
located in any module, and produces the constraints.

(2) The access operation ce() as part of an expression is accepted by the java2Vhdl translator
and returns the value determined by its return statement.

(3) The time() operation can be used to get the time of the last setting of the appropriate clock
enable signal. This is necessary for checking the time on Java simulation. The time can be
stored as shown in 28. Example for build to ce signals left side on marker (2).

(4) The timeGroupName(), its return string, is evaluated by the Java2Vhdl translator to for the
constraint file generation.

(5) The return value of period() should be a constant literal, the minimal number of clock steps
between two active ce() signals of the accessed instance. It is used both for the constraint file
and as argument for time checks in Java, see (2) in 28. Example for build to ce signals .

The Java2Vhdl translator does the following:

 • Time groups are built with all found interface access agents of type CeTime_ifc in all
modules,. The name of the time group is the module name, following the value of the
timeGroupName, It means if you have more as one module with the same type, of course it
builds different time groups.

 • All processes which uses the ce() of any CeTime_ifc access as exclusively if condition for all
process variables are associated to this time group.

 • All processes which are not exclusively use one ce(), are not associated to time groups. It
means, you should sort your processes. Each process should associated to exact one clock
enable which is delivered from such a CeTime_ifc. Then you have a proper order for time
Groups and constraints.

See also the common explanation in chapter 3.2 Timing relations

page 90 4.12 Checking time between FF groups

4.12.3 Check of timing between Flipflops in Java

If you know your signals, then it is sufficient without any test. But better is, also test it.

The basic for the test is the time argument of all step routines and PROCESS constructors. With
the current time, which counts up on any clock edge, you can test the last time of set an accessed,
used signal, and check the minimal difference. If you have met all sensitive situations in test then
you have a proper tested evidence.

The real delay in the time groups can be checked while building this signals itself:
 if(...
 this.ce = true; // (1)
 this.time_ce = Fpga.checkTime(time, z.time_ce, thism.srcCE0.period()); // (2)

The Fpga.checkTime(…) operation takes the current time and a second time, builds the difference
and compares it with the given min difference. The output is the first argument time, which allows
writing comparison and assignment in one line. The z.time_ce is the last time before activation of
ce, the current will be set in this.time_ce. The comparison is done with the same value which is
stored in the access agent for ce. This is done any time on new build of ce.

The delay between the time groups can be tested one time per step in the main loop, if the main
loop knows all relevent time groups:
 @Override public void step (int time) { // (10)
 this.modules.mdl1.srcCE0.checkTime(time, this.modules.mdl1.srcCE7, 3);
 this.modules.mdl1.srcCE7.checkTime(time, this.modules.mdl1.srcCE0, 7);

Here manually determined with 3, it checks that any ce() from the srcCE0 comes minimal 3 clocks
after srcCe7.ce(). This is the proper value for the constraint between this groups. It is not
automatically translated in the current version of Java2Vhdl (2023-04) but can manually taken.

Additionally, any signal can be tested with the Fpga.checkTime(…) operation. The time can be
stored in a variable time_ in any class, it is not used for Java2Vhdl translation, only for Java test.
This may be interesting in sophisticated situations.

page 91

page 92 5. The example Blinking LED, view to Java sources in respect to the FPGA
description

5. The example Blinking LED, view to Java sources in respect
to the FPGA description

This is a study example or template for your own. The sources are located for the exmaple.zip in:

• ../../deploy/Example1_BlinkingLed-2022-05-26.zip A zip file containing an example and link to the
tool base.

• Note: This content should be updated to the current version.
src
 +-main
 +-java
 +-srcJava_FpgaExmplBlinkingLed
 +-org/vishia/fpga/exmplBlinkingLed This should be your own package pat...
 +-fpgatop/*.java
 +-modules/*.java
 +-test/*.java only for test on Java level, may be...

The content of the files are partially described already in the approach document / chapter 3
Java2VHDL - approaches This chapter describes it from the view of the template for your own.

5.1. The top level FPGA java file

All following code snippets comes from the
main/java/srcJava_FpgaExmpl…/fpgatop/BlinkingLed_Fpga.java.

5.1.1. Package and class definition, import

In Java always the name and path of the file itself should match to the package declaration and
name of the only one public class inside the file: The Java file starts with the package
declaration. The package names and also the appropriate directories on the file system must be
written starting with a lower case character.

Java: top level class definition
package org.vishia.fpga.exmplBlinkingLed.fpgatop;

import org.vishia.fpga.stdmodules.Reset;

public class BlinkingLed_Fpga implements FpgaModule_ifc {

The import statements name all used classes from other packages. It is possible to use an
asterisk to select all Files in the package. But then the dependencies are not well documented. In
this case anyway all files in the 'exmplBlinkingLed.modules' package should be part of, then it is
ok.

The module class should implement the FpgaModule_ifc. That is all necessary. This interface
defines:

Java: FpgaModule_ifc definition as basic interface
/**This interface should unify a module for FPGA.
 * The here defined operations are necessary especially for test in Java.
 * Not necessary for VHDL translation.
 * @author Hartmut Schorrig www.vishia.org
 *
 */
public interface FpgaModule_ifc {

5.1.1. Package and class definition, import page 93

 /**Creates an initial state as after hardware reset.
 * Usual the default ctors should be called here.
 * The operation should be called first on start of simulation.
 * Especially necessary on reusing of a given instance (without new
construction)
 * for several tests.
 * Pattern: <pre>
 * void reset () {
 * this.my = new My();
 * }</pre>
 */
 void reset ();

 /**This operation should prepare all D-inputs of flipflops. It is the creation
o...
 * Pattern: <pre>
 * void step (int time) {
 * this.my_d = new My(time, this.my, this, ref);
 * }</pre>
 *
 * @param time
 */
 void step (int time);

 /**This operation should update the Q-Outputs of flipflop from D
 * and can also output signals to ports.
 * Pattern: <pre>
 * void update () {
 * this.my = this.my_d;
 * }</pre>
 */
 void update ();

}

5.1.2. The modules in the top level

The class definition continues with the

Java: used modules in the top level
 /**The modules which are part of this Fpga for test. */
 public class Modules {

 /**The i/o pins of the top level FPGA should have exact this name ioPins. */
 public BlinkingLed_FpgaInOutput ioPins = new BlinkingLed_FpgaInOutput();

 /**Build a reset signal high active for reset. Initial or also with the
reset_...
 * This module is immediately connected to one of the inputFpga pins
 * via specific interface, see constructor argument type.
 */
 public final Reset res = new Reset(this.ioPins.reset_Inpin);

 public final Test_Combinatoric_BlinkingLed vhdl_Combinatoric = new
Test_Combin...

 public final BlinkingLedCt ct = new BlinkingLedCt(this.res,
BlinkingLed_Fpga.t...

 public final ClockDivider ce = new ClockDivider(this.res, this.ct);

page 94 5.1. The top level FPGA java file

 Modules () {
 //aggregate the module afterwards
 this.ct.init(this.res, BlinkingLed_Fpga.this.blinkingLedCfg,
this.ce); //...
 }
 }

 public final Modules modules;

The modules are aggregated together as described in Java2Vhdl Approaches, chapter More
possibilities with Java2VHDL: References (aggregations) in Object Orientation kind.

Because you can generate a Javadoc it is recommended to comment all modules in the given
style (here not all are commented). But also a non commented style is sufficient because you can
use cross referencing in the IDE.

The modules should be connected immediately here, either on instantiation with a parameterized
constructor, or with the init(…) operation in the constructor of modules. It depends on circular
referencing whether the immediately referenced instantiation can be done. That is more simple.
But using init(…) has more flexibility.

Firstly in this class the ioPins are defined. This is done in an extra class, see next chapter.

The writing style with the explicitly this is recommended. this is also implicitly accept (can be
omitted), but then the relations are worse documented. The BlinkingLed_Fpga.this writing
style is necessary for the translator. BlinkingLed_Fpga.this is the reference to the
environment class. Java can automatically detect this relation, it checks whether the following
identifier is able to find either locally, or in the own class, or in all environment classes. This is more
error prone because of confusion in identifier usage. Hence the dedicated writing style
EnvironmentClass.this prevents the confusion. For the Java2Vhdl translator it is also more
simple.

5.1.3. step(…) and update() operations

Following the both routines are defined:

Java: top level class step update
 @Override
 public void step(int time) {
 this.vhdlink_vhdl_Combinatoric = new Vhdlink_vhdl_Combinatoric(time, this,
thi...
 this.modules.res.step(time);
 this.modules.ce.step(time);
 this.modules.ct.step(time);

 }

 @Override
 public void update() {
 this.modules.res.update();
 this.modules.ce.update();
 this.modules.ct.update();
 }

See also Java2Vhdl_Approaches.html#stepupd

Both routines should call all step(time) and update() of all sub modules. The time comes
from the simulation environment useble for time checking, see
Java2Vhdl_Approaches.html#timeCnstrn and for signal output, see
Java2Vhdl_Approaches.html#testOutp.

5.1.4. interface agents in the top level page 95

5.1.4. interface agents in the top level

The so named interface agents are anonymous class definitions as interface implementation to
access data in this module. They are usable for referencing.

Java: top level class interface agent/access
 /**Provides the used possibility for configuration values.
 */
 @Fpga.IfcAccess BlinkingLedCfg_ifc blinkingLedCfg = new BlinkingLedCfg_ifc ()
{

 @Override @Fpga.BITVECTOR(8) public int time_BlinkingLed() {
 return 0x64;
 }

 @Override public int onDuration_BlinkingLed() {
 return 10;
 }

 @Override
 public int time() { return 0; } // set from beginning

 };

In the top level they should be used either for stubs instead not implemented modules, for test
designs or variations, but also for parameter of modules which should be determined in the top
level. This is shown above. The interface access implements a …Cfg… interface for configuration
parameters. It is used as reference for the ct(…,
BlinkingLed_Fpga.this.blinkingLedCfg,… module, see chapter 5.1.2 The modules in the
top level

5.1.5. test output in the top level

The top level does not need test output if it has no own PROCESS sub classes. The output
preparation for the main level can be done immediately in the test environment, see chapter 6.1.9
Test output preparation for the main level. This has no meaning for the Java to VHDL translation,
writing this stuff to the test java file unburdens this file for translation.

5.2. The FPGA pin description file

It is a good idea to separate the Pin description source file from the top level file, because different
inner FPGA designs can use the same pinning. This is typical if you have a hardware board with a
given layout, but the content of the FPGA should be varied. Then you need define the pinning only
one time for the given layout.

Furthermore it is also possible to have more as one top level FPGA file for different parts, but you
should have only one file for the pinning, because this is board layout related.

5.2.1. How to designate the ioPins file

The pin description file should be designated as ioPins in the Modules class of a top level:

Java: ioPins definition in the top level
 /**The modules which are part of this Fpga for test. */
 public class Modules {

 /**The i/o pins of the top level FPGA should have exact this name ioPins. */
 public BlinkingLed_FpgaInOutput ioPins = new BlinkingLed_FpgaInOutput();

See also chapter 5.1.2 The modules in the top level. The designated class file is searched and

page 96 5.2. The FPGA pin description file

translated especially for IO pinning.

The ioPins file starts due to Java conventions with

Java: BlinkingLed_FpgaInOutput class definition head
package org.vishia.fpga.exmplBlinkingLed.fpgatop;

import org.vishia.fpga.Fpga;
import org.vishia.fpga.stdmodules.Reset_Inpin_ifc;

public class BlinkingLed_FpgaInOutput {

5.2.2. Input and Output inner classes

For this example the pin classes are short, for more pins it is a little bit more, very simple:

Java: BlinkingLed_FpgaInOutput Input and Output
 public static class Input {

 /**A low active reset pin, usual also the PROGR pin.
 * Because of the specific function the access should only be done with the
he...
 * For test it can be accessed in a test access class in the same package.*/
 boolean reset_Pin;
 }

 public static class Output {

 /**Ordinary output pins, use public in responsible to top level design
sources...
 public boolean led1, led2, led3, led4, led5, led6, led7, led8;
 }

 /**This instances are final and public accessible.
 * The inputs should be used in the step operations as given on start of D-
calcu...
 */
 public final Input input = new Input();

 /**The outputs should be set in the update() operation of the top level with
the...
 public final Output output = new Output();

• If the same pin should be used both as input and output, then the same pin name should be
defined in the Input and in the Output inner class.

• If a pin should have tristate character (often necessary on input/output switch), it should be
designated as char type and set with '0', '1' and 'Z'. (TODO for the 2022-05 version).

• The Input pins can be declared as package private (without designation) if an interface access is
defined here also to set the pins. See next chapter. Elsewhere they can be designated as public
for simple set accesses for tests.

• Output pins should be declared as public for immediately access for test and to set from the
different top level FPGA java file maybe in different packages.

The output pins are written immediately in the update() operation on the top level:

Java: top level class using interface implementation and simple access operation for output

5.2.3. Interface access to the Input pins page 97

5.2.3. Interface access to the Input pins

The input pins are usual accessed via interface references from view of a module. Hence the
Java2Vhdl_Approaches.html#IfcAccess should be defined in a proper way for all input pins. For
specific pins a specific interface also with more as one bit can be used. For common ordinary pins
the following simple interface is sufficient:

Java: Bit_ifc
package org.vishia.fpga.stdmodules;

import org.vishia.fpga.Fpga;

/**This is a very common interface only for one bit for any usage.
 * For some reason an input is necessary and an output is offered,
 * but the connection from the input to the output is determined not by a
module,
 * It is determined by the interconnection of modules.
 * In such cases a specialized interface should not be used.
 * The connection should be proper for any plug.
 * The responsibility of the correctness of the connection is associated to the
in...
 *

 * The implementor should have the annotation <code>@Fpga.IfcAccess</code>,
example:
 * <pre>
 public @Fpga.IfcAccess Bit_ifc txReqMaster = new Bit_ifc () {
 @Override public boolean getBit() {
 return SpiMaster.this.spiM.stateCmd;
 }
 };
 * </pre>
 * @author Hartmut Schorrig
 *
 */
public interface Bit_ifc {

 boolean getBit ();
}

In this example only the access to the only one reset_Pin is necessary

Java: BlinkingLed_FpgaInOutput Interface access
 /**Get the reset pin as referenced interface access from a module.
 * Using the {@link org.vishia.fpga.stdmodules.Reset} may be seen as
recommended...
 */
 @Fpga.IfcAccess public Reset_Inpin_ifc reset_Inpin = new Reset_Inpin_ifc () {
 @Override public boolean reset_Pin() { return
BlinkingLed_FpgaInOutput.this.in...
 };

This uses the Reset_Inpin_ifc as used in the accessing module
org.vishia.fpga.stdmodules.Reset, see the Modules definition in the top level file.

To set this inpin a set operation is necessary because of the non public property of the pin variable.
It is a good decision for overview (divide and conquer) to write this set operation in an extra file, but
in the same package:

Java: BlinkingLed_IoAcc for test, the whole file:
package org.vishia.fpga.exmplBlinkingLed.fpgatop;

/**This class is only for test to access Pins in {@link

page 98 5.2. The FPGA pin description file

BlinkingLed_FpgaInOutput}
 * @author Hartmut Schorrig
 *
 */
public class BlinkingLed_IoAcc {

 /**Operation to set the reset Inpin, with the hint that this pin is low
active.
 * @param val the immediately pin value, true for high, inactive. */
 public static void setLowactive_reset_Inpin(BlinkingLed_Fpga fpga, boolean
val) {
 fpga.modules.ioPins.input.reset_Pin = val;
 }

}

5.3. A module file

All following code snippets comes from the exmpl_vishiaJ2Vhdl_BlinkingLed/java/ org/
vishia/fpga/modules/BlinkingLedCt.java.

5.3.1. Package and class definition, import and module interface

The principles in Java are already explained in 5.1.1 Package and class definition, import.

Java: module class definition
package org.vishia.fpga.exmplBlinkingLed.modules;

import org.vishia.fpga.Fpga;
import org.vishia.fpga.FpgaModule_ifc;
import org.vishia.fpga.stdmodules.Bit_ifc;
import org.vishia.fpga.stdmodules.Reset_ifc;
import org.vishia.fpga.testutil.TestSignalRecorder;
import org.vishia.util.StringFunctions_C;

import java.io.IOException;

public final class BlinkingLedCt implements FpgaModule_ifc, BlinkingLed_ifc {

Here the advantage of dependency documentation of the import statements are shown. In
opposite to C/++ programming where the dependencies are documented with included headers,
the used modules are immediately obviously. In C/++ maybe hidden dependencies may be existing
because an header can include other headers, and the association between header and
implementation files is weak. In Java it is strong, clarified and obviously.

You see that external dependencies exists to one of standard modules, to test utils and to a special
class for String preparation, which is used for test output.

The module class implements the BlinkingLed_ifc which is a module interface, see
Java2Vhdl_Approaches.html#IfcModule, the implementation is shown in the chapter 5.3.5 interface
implementation of the module

5.3.2. The references and sub modules of the module

The class definition continues with the

Java: module class references
 private static class Ref {

 /**Common module for save creation of a reset signal. */

5.3.2. The references and sub modules of the module page 99

 final Reset_ifc reset;

 final BlinkingLedCfg_ifc cfg;

 /**Specific module for clock pre-division. */
 final ClockDivider clkDiv;

 Ref(Reset_ifc reset, BlinkingLedCfg_ifc cfg, ClockDivider clkDiv) {
 this.reset = reset;
 this.cfg = cfg;
 this.clkDiv = clkDiv;
 }
 }

 private Ref ref;

The meaning and the writing style of the references is also explained in
Java2Vhdl_Approaches.html#aggr.

Also there is explained how the references are set. It is the same example.

A module can also have sub modules to build a deeper tree of modules. It is adequate to the top
level. (TODO 2022-05 not tested, should work)

5.3.3. Inner static classes in a module which builds a TYPE RECORD and PROCESS
in VHDL

The following code snippet shows one PROCESS as a whole.

Java: module PROCESS class and instances
 @Fpga.VHDL_PROCESS public static final class Q{

 @Fpga.STDVECTOR(16) public final int ctLow;
 @Fpga.STDVECTOR(8) final int ct;
 final boolean led;
 int time;
 @Fpga.BITVECTOR(4) final State state;

 Q() {
 this.ctLow = 0;
 this.ct = 0;
 this.led = false;
 this.time = 0;
 this.state = State.nonInit;
 }

 @Fpga.VHDL_PROCESS Q(int time, Q z, Ref ref, Modules modules) {
 Fpga.checkTime(time, ref.clkDiv.q.time, 1); // for the ce signal,
constrain...
 if(modules.ct_clkDiv.q.ce) {
 Fpga.checkTime(time, z.time, 20); // check whether all own
process ...
 Fpga.checkTime(time, ref.cfg.time(), 20);// check all signals from the
ref...
 this.time = time; // all variables are declared
as ...
 if(ref.reset.res(time, 20)) { // interface access to assigned
her...
 this.ct = ref.cfg.time_BlinkingLed();
 this.ctLow = 0x0000;
 this.state = z.state;
 } // underflow detection to 111....

page 100 5.3. A module file

as...
 else if(Fpga.getBits(z.ctLow, 15, 13)==0b111) { // check only 3 bits
an...
 this.ctLow = 0x61a7; // 24999; // Period 25 ms, hint
c...
 // // TODO should convert automatically also a
given ...
 if(z.ct == 0x00) { // here a full 0 test with 8
bit ...
 this.ct = ref.cfg.time_BlinkingLed();// interface access to the
reload...
 } else {
 this.ct = z.ct -1; // high counter normally count
do...
 }
 this.state = State.fast;
 }
 else {
 this.ctLow = z.ctLow -1; // count down automatically
prope...
 this.ct = z.ct; // high counter copy the state
(n...
 this.state = z.state;
 }
 this.led = z.ct < ref.cfg.onDuration_BlinkingLed(); //set FF after
compari...
 }
 else { // clock enable ce == false
 this.ct = z.ct; // copy the state (not
generated ...
 this.ctLow = z.ctLow;
 this.led = z.led;
 this.state = z.state;
 this.time = z.time;
 }
 }
 }

 public Q q = new Q();
 private Q q_d;

This is the core functionality for VHDL and hence explained elaborately:

• The inner class should be marked with the @Fpga.VHDL_PROCESS annotation to detect as such
from the Java2Vhdl translator.

• Variables in the inner class are generated in a type record with the class name:
TYPE BlinkingLedCt_Q_REC IS RECORD
 ctLow : STD_LOGIC_VECTOR(15 DOWNTO 0);
 ct : STD_LOGIC_VECTOR(7 DOWNTO 0);
 led : BIT;
END RECORD BlinkingLedCt_Q_REC;

• Variables started with time are ignored for VHDL conversion, there are for timing test on Java
level.

• SIGNAL definitions in VHDL with the TYPE RECORD (instances for this RECORD) are not created
because of the module PROCESS class definitions. Instead, they are defined only if the module
class is used, and then with the module(s) name(s). It is possible to have a module more as one
time, then also more SIGNAL … RECORD variable are defined. Here for the usage in the
fpgatop/BlinkingLed_Fpga.java:

Java: top level part of Modules definition:

5.3.3. Inner static classes in a module which builds a TYPE RECORD and PROCESS in VHDL
page

101

 public class Modules {

 public final BlinkingLedCt ct = new BlinkingLedCt(....

Vhdl: SIGNAL definition for this PROCESS of a module:
SIGNAL ce_Q : ClockDivider_Q_REC;
SIGNAL ct_Q : BlinkingLedCt_Q_REC;
SIGNAL res_Q : Reset_Q_REC;

• You can see in the mid of this three signals the module name ct from the module definition in
Modules combined with the name of the Process Q. If you have more PROCESS classes in a
module, of course you have more TYPE RECORD definitions and also more appropriate SIGNAL
definitions.

• The constructor Q() {…} is only for Java test. It is (should be) related to the reset behavior of the
FPGA: Signals are reset to 0-level. A specific reset behavior is not provided. It is also not full
clarified in VHDL, depends on FPGA types. The 0-initialization is anyway applicable. For specific
reset behavior the following process should use a reset signal functionality.

• The constructor @Fpga.VHDL_PROCESS Q(Q z, Ref ref) { … now describes the process for
VHDL translation and also for simulation. It should/could have the following arguments with fixed
naming conventions:

• int time reference to a time value used for timing test in Java, not used for VHDL

• z of the same type: It is the previous state for calculation, comes from the current state in step.

• ref reference to the Ref class of this module, to access referenced modules.

• mdl reference to the whole module class (set with this on call, see next chapter).

• in reference of a Input class of the module for a simple wiring without references.

• out reference to an Output class of this module, more exact to the _d instance (prepared
values). This allows the simple wiring and public access in Java.

• The PROCESS inner class is private, should be used only in this module and not accessed from
outside. The elements are package private (without designation in Java). It can be accessed
anyway only in this module because of the private nature of the class.

• The content of this constructor is immediately translated to the VHDL PROCESS. To see it for this
example look on the translated code:

Vhdl: PROCESS due to the BlinkingLedCt.Q constructor:
ct_Q_PRC: PROCESS (clk)
BEGIN IF(clk'event AND clK='1') THEN

 IF ce_Q.ce='1' THEN
 IF (res_Q.res)='1' THEN
 ct_Q.ct <= TO_STDLOGICVECTOR(BlinkingLed_Fpga_time_BlinkingLed);
 ELSE
 IF ct_Q.ctLow(15 DOWNTO 13) = "111" THEN
 ct_Q.ctLow <= x"61a7";
 IF ct_Q.ct = x"00" THEN
 ct_Q.ct <= TO_STDLOGICVECTOR(BlinkingLed_Fpga_time_BlinkingLed);
 ELSE
 ct_Q.ct <= ct_Q.ct - 1 ;
 END IF;
 ELSE
 ct_Q.ctLow <= ct_Q.ctLow - 1 ;
 END IF;
 END IF;

page 102 5.3. A module file

 IF ct_Q.ct < BlinkingLed_Fpga_onDuration_BlinkingLed THEN ct_Q.led <=
'1'...
 ELSE
 END IF;
END IF; END PROCESS;

• Variable with time… are ignored for VHDL, they are for timing checks in Java.

• Variable which are set with the same z. variable are ignored for VHDL because this is the
standard behavior for VHDL: Not assigned variables preserve there values. But that assigments
are necessary for Java.

• Because all variables should be final a complete unique assignment of all variables is necessary
for Java. This helps preventing errors on forgotten not clarified functionality:

• Because you should write this.var = z.var; in Java it is clarified in the Java source that this
is an unchanged value. The place and route for the FPGA can use either the own Q output of the
FF for the logic, or can work with the CE (clock enable) input for the FF groups.

• You cannot forget variables, because Java checks setting of all final variables.

• Tip for writing sources with final variables: You can firstly remove all final keywords, set it one
after another. Then the error messages for missing final are obviously step by step. You can set an
assignment this.var = z.var; in all branches, then set the variable to final, then you get an
error message on this positions where the variable is defined twice. Remove it and think about
correct assignments due to the requested logic. At least you have all variables final and no
errors.

• If you use already assigned this. variables on the right side for an assignment, this would be the
value of the D-input of an FF. VHDL suggests using an internal variable for that. In the moment
(2022-05) this is not regarded, but can be implemented in the Java2Vhdl translator.

How statements and expressions are translated, see Java2Vhdl_TranslatorInternals.html.

• At last in the Java example with private Q q = new Q(); and private Q q_d; two
references for instances are defined.

• The q reference must have the same name as the PROCESS class, only start with a lower case
character. Here it is only one character. This reference is used to access to the RECORD
instances in VHDL both on public immediately definition of this reference (possible) and also for
interface accesses.

• In this example the reference q is private. This means that you can be sure that there is no
direct access from outside, both for the Java source level and for the VHDL record type.

• The _d instance is not used for translation and should only accessed in the step(time) and
update() operations. It holds the prepared D-input values of the FlipFlops. It should be anytime
private

• Note that Java knows for class instances only references (other than in C/++). All is a reference.
The instances are organized in the heap.

5.3.4. step(…) and update() operations

The step and update in a module should call the process execution. It is not used for the VHDL
translation, but for the test.

Java: module class step and update
 @Override
 public void step(int time) {
 if(this.ref.clkDiv.q.ce) { // speed up simulation, only on ce
the ...
 this.q_d = new Q(time, this.q, this.ref, this.modules);

5.3.4. step(…) and update() operations page
103

 this.vhdlink_ram_d = new Vhdlink_ram(time, this.modules.ram, this.modules,
t...
 this.ramUse_d = new RamUse(this.ramUse, this);
 }
 }

 @Override
 public void update() {
 this.q = this.q_d;
 this.vhdlink_ram = this.vhdlink_ram_d;
 this.ramUse = this.ramUse_d;
 }

See also Java2Vhdl_Approaches.html#stepupd

You see here how does it work:

• step(time) creates new instances of all process variables with new combinatoric values and
stores it in the private …_d instance. Therefore, it is blocked for third-party access. Other
modules should use only the Q-state of the FlipFlops to preserve the exact timing. All step(time)
routines of all modules are executed firstly before update()

• update() stores all prepared D-values in the real used instances for all immediately and interface
accesses.

It means, any step in Java creates a new instance. The instance is allocated in the heap. If you
have 120000000 steps for the BlinkingLed example, the Java simulation creates 120000000
instance of any PROCESS class type for any used module. The simulation runs on a Notebook
with normal modern equipment approximately 5 seconds, no more. It needs approximately 0.3
GByte RAM (measured with the Task Manager on Windows-10). It means Java can proper deal
with this request.

If sub modules are present, of course this should be also called here.

5.3.5. interface implementation of the module

The next code snippet shows two accesses:

Java: module class interface implementation and simple access operation
 /**Implementation of a given interface which is also fulfilled by this module.
 * @return value for a led which should be blinking.
 */
 @Override public boolean ledBlinking() { return this.q.led; }

 /**This is an example for an access operation only for this module,
 * without abstraction of using an interface.
 * Hence it is only defined for this module, not with a universal interface,
 * it should be used especially for necessary test outputs wich have only
meanin...
 * not for input interfaces for other modules.
 * @return the counter.
 */
 @Fpga.GetterVhdl public int ct() { return this.q.ct; }
 //@Fpga.BITVECTOR(8) //TODO evaluate it

The first operation with the annotation @Override overrides the declaration in the
BlinkingLed_ifc, see chapter [mdlclass]. It is used on the top level of the FPGA for the outputs
in the update() operation of the top level in the first line, see code snippet below.

The second operation with the annotation @Fpga.GetterVhdl is an access operation without an
interface. It means it cannot be used as univeral access, only for this module. Hence it is not

page 104 5.3. A module file

proper for an input reference of another module, because then another implementation and
therefore access via an interface is necessary. But this operation is usable both for specific test
outputs on the FPGA and to build output values only for the module specific implementation. It is
used on the top level of the FPGA for the outputs in the update() operation of the top level in the
last line:

Java: top level class using interface implementation and simple access operation for output

5.3.6. interface agents or access in a module

The so named interface agents are anonymous class definitions as interface implementation to
access data in this module. They are usable for referencing.

Java: module class interface agents/access
 public @Fpga.IfcAccess Bit_ifc getLedFast = new Bit_ifc () {
 @Override public boolean getBit() {
 return Fpga.getBits(BlinkingLedCt.this.q.ct, 2,0) == 0b000;
 }
 };

See the example in the top level, chapter 5.1.4 interface agents in the top level In this case the
interface access is used for the output, see the last code snippet in the chapter above: 'top level
class using interface implementation and simple access operation for output'.

The implementation accesses the ct variable in the q instance of the module class. The writing
style BlinkingLedCt.this. means in Java the access to the (named) environment class. For
debugging this reference is shown as this$0 whereas this$1 etc. are higher level environment
classes. In Java this can be omitted, but then it is lesser obviously. For the Java2Vhdl translator it
is (yet 2022-05) necessary to write.

5.3.7. test output

The module source.java is continued with

TestSignalRecorderHead

Java: module class TestSignalRecorder class definition
 public class TestSignals extends TestSignalRecorder {

 }

This class is not used for the VHDL generation, but used for test. It is explained in the next main
chapter.

5.4. Instantiate of entities from other VHDL files (PORT MAP)

Till now this description suggest using only one VHDL file. There are some modules, each module
is a java class, but all modules are flattened in the only one generated VHDL file.

But VHDL knows by itself also a hierarchy of modules.

5.4.1. How to use other VHDL files

To include another module (as submodule) respectively instantiate another entity in the own VHDL
file (wording of some VHDL descriptions) two steps are necessary:

Definition of the entity header

Written after ARCHITECTURE and before BEGIN, in the definition part:

COMPONENT ExmInclVhdl
PORT (

5.4.1. How to use other VHDL files page
105

 Clock: IN STD_LOGIC ;
 ClockEn: IN STD_LOGIC ;
 Reset: IN STD_LOGIC ;
 WE: IN STD_LOGIC ;
 Address: IN STD_LOGIC_VECTOR(6 DOWNTO 0) ;
 Data: IN STD_LOGIC_VECTOR(7 DOWNTO 0) ;
 Q: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
);
END COMPONENT;

This definition should be the same as the PORT definition in the used VHDL file, which should be
present on routine process in the adequate FPGA design tool. A system of header files as in C/++
which contains the declarations and data definitions for both, the implementation (own compilation
unit) and usage (other compilation unit) seems to be not present in VHDL.

Instantiation of the other VHDL module as sub module

Written after BEGIN, in the implementaion part:

ct_Ram_vhdlMdl: ExmInclVhdl
Port MAP(
 Address => ct_Q.ctLow(6 DOWNTO 0) ,
 Clock => TO_STDULOGIC(clk) ,
 ClockEn => TO_STDULOGIC(ce_Q.ce) ,
 Data => ct_Q.ctLow(8 DOWNTO 1) ,
 Reset => TO_STDULOGIC(res_Q.res) ,
 WE => ce_Q.ct(0) ,
 Q => ct_Ram.ramData
);

You can instantiate the same entity (VHDL module) more as one time. First a identifier of the
instance, after colon the type identifier, following from the assignments of signals of the PORT of
the instantiated module to internal signals of this module. All input signals should be associated,
possible as shown in the example with type conversion and bit selection.

The outputs should be assigned to only one type matching variable. It is not necessary to assign
(use) all outputs.

The access to the output of the module is done with access to this assigned variables.

Note, that this are not 'assignments' but signal connections. For the FPGA content it is the same
to access the connected variable as the element in the instantiated VHDL module. This is other
than calling a funtion in C where this are often move machince code operations.

5.4.2. User stories for modularity with VHDL files

The Java2Vhdl translator allows modularity in Java and generates only one VHDL file as input for
place and route. This is sufficient. But some reasons may be given to include more VHDL files.

VHDL file describes specifics in the FPGA such as RAM, controller part

It is familiar to select specific features of a given FPGA, for example a RAM (as in the example
above), or other special functionality. This is often tool guided, and produces after selection of the
feature a VHDL file. The content of this VHDL file is not intended for further editing, but it is the
input for the place and route. Now such VHDL files should be included in the Java2Vhdl created
ones.

Using given solutions (legacy, from other colleagues or departments)

Using the Java2Vhdl approach is a specific edition. It presumes experience with the Java
language, and also being open to this new idea. It cannot presumed, that all colleagues and other
departments does the same. The common commitment is VHDL, traditional and proven. A project
can be elaborately, so that the work of many people should match together.

page 106 5.4. Instantiate of entities from other VHDL files (PORT MAP)

Hence using other work based on VHDL is the first approach. Any department produces a VHDL
input for modules, and the root VHDL for the FPGA uses it. How to produce this VHDL input, using
Java2Vhdl, any other tool or manual written, is not important.

5.4.3. Module (class) in Java for given VHDL files

The first question is, it should be able to simulate in Java, whereas the simulation may not map the
full functionality of the given Vhdl file, only the interface (black box thinking) should be fulfilled.

Following the example with the RAM, the class as representer for the given VHDL file starts as
following:
//file: /exmpl_vishiaJ2Vhdl_BlinkingLed/java/org/vishia/fpga/exmplBlinkingLed/modu...
/**This is an example class for an included immediately VHDL.
 * In this case it presents a RAM Block in a XO2 Lattice FPGA.
 * The Java class presents the exact same interfaces, but a Java-specific implemen...
 * @author Hartmut Schorrig
 *
 */
@Fpga.VHDL_MODULE (vhdlEntity = "RAM_SpiRamSel") public class RAM_SpiRamSel imp...

 public static class Input {
 public @Fpga.STD_LOGIC boolean Clock;
 public @Fpga.STD_LOGIC boolean ClockEn;
 public @Fpga.STD_LOGIC boolean Reset;
 public @Fpga.STD_LOGIC boolean WE;
 public @Fpga.STDVECTOR(7) int Address;
 public @Fpga.STDVECTOR(8) int Data;

 }

 public static class Output {
 public @Fpga.STDVECTOR(8) int Q;
 }

6. The example Blinking LED, view to Java sources in respect
to test on Java level

If you want to separate test files (with a lot of complicated test cases) from the sources, you can
also place the test Java files in
src
 +-test use the test sub folder
 +-java
 +-testJava_YourComponent
 +-package/path/your/component This should be your own package pat...
 +-test/*.java only for test on Java level.

But for this simple example the test class is part of the same Java source tree:
src
 +-main
 +-java
 +-srcJava_FpgaExmplBlinkingLed
 +-org/vishia/fpga/exmplBlinkingLed
 +-test/*,java only for test on Java level

The test classes offers test cases/pattern and checks.

The source code of the modules offers Test output signal generation functionality which are
universal usable for the tests.

6.1. The main test source page
107

6.1. The main test source

6.1.1. Class definition and instances to test and used for test

Look firstly to that org/vishia/fpga/exmplBlinkingLed/test/Test_BlinkingLed.java
which contains the main start routine:

Java: main test routine class definition
package org.vishia.fpga.exmplBlinkingLed.test;

import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;

import org.vishia.fpga.exmplBlinkingLed.fpgatop.BlinkingLed_Fpga;
import org.vishia.fpga.exmplBlinkingLed.fpgatop.BlinkingLed_IoAcc;
import org.vishia.fpga.testutil.CheckOper;
import org.vishia.fpga.testutil.TestSignalRecorder;
import org.vishia.fpga.testutil.TestSignalRecorderSet;
import org.vishia.util.TestOrg;

public class Test_BlinkingLed {

 BlinkingLed_Fpga fpga = new BlinkingLed_Fpga();

You see on the depedencies (import statements) that the test does not need knowledge about
the modules. This is because the test signals are built independently in the modules, the access is
via the TestSignalRecorder interface.

On top of the test class the BlinkingLed_Fpga fpga = new BlinkingLed_Fpga(); FPGA
top level is instantiated one time. It is also possible to instantiate more as one FPGA to check
interaction. It is also possible to instantiate here some simulation replacements for environment
hardware, all what’s necessary.

If this is a module test class, then the module(s) should be instantiated here with their test
environment (test bed).

6.1.2. Instantiate a horizontal output recorder

The horizontal output recorder is an instance of
../../docuSrcJava_vishiaFpga/org/vishia/fpga/testutil/TestSignalRecorderSet.html.

Java: output recorder instance and definiton in start of a test routine
 TestSignalRecorderSet outH;

 void test_All (TestOrg testParent) throws IOException {
 this.outH = new TestSignalRecorderSet();
 this.outH.registerRecorder(this.fpga.modules.ct.new TestSignals("ct"));
 this.outH.registerRecorder(this.new TestSignals("io"));
 this.outH.clean();

The instance should be created new in any test routine for that test outputs. After them the desired
TestSignalRecorder instances of the modules should be added. One module can have more as
one instances of TestSignalRecorder. They are used to compile the desired output
information. For different test cases you can get just different output information.

The detailed content of the output information is determined in the modules itself, see the chapter
6.2.1 Determination of information to record for output horizontal.

page 108 6.1. The main test source

6.1.3. Organization of a checked test

The next line shows only the creation of a test check support class, see org.vishia.util.TestOrg.

Java: Instance of TestOrg in the test routine
 TestOrg test = new TestOrg("testTxSpe", 6, testParent);

This class helps to organize some tests with a concise output for automatic test case evaluation.

6.1.4. Initialize stimuli (signals) for the simulation

This are the initials settings of all input pins. It can be set either immediately or via interface
operations.

Java: Initialization stimulis / signals
 BlinkingLed_IoAcc.setLowactive_reset_Inpin(this.fpga, true); //
res...

For this example only the reset pin is used. For the test it is hold to inactive high during the whole
operation. The functionality of the reset pin itself can be tested with another programmed test, or is
already tested using the reset module in other contexts. Hence, it is not important here.

6.1.5. Run the simulation for this test case

In the simulation loop all FPGA simulations and also conditions of inputs to the FPGA which are
not constant (depends on outputs, own stimuli signals) should be calculated. The basic step time is
the clock.

Java: statements to run the test
 int time = 0;
 while(++time < 120000000) {
 this.fpga.step(++time);
 this.fpga.update();
 if(this.fpga.modules.ce.q.ce) { // speed up simulation, only
on ...
 this.outH.addSignals(time);
 }
 }

To simulate the FPGA(s) the appropriate step(time) one after another and after them all
update() should be called. After update() the preparation of inputs to the test bed can be
gotten from FPGA outputs of this step time. The test bed calculations can be done then in the next
loop as first before the fpga.step(). Here nothing else is to do.

Also after all updates the outH.addSignals(time) is called to record all signals in all modules,
organized in the outH of type TestSignalGeneratorSet, see sub chapters above.

Here it is shown that the addSignals(…) is conditionally called only if …ce. This means that
the output signals are not resolved down to the individual clock level. The ce is the central clock
enable for the most module functions, and only outputs regarded to this ce are in focus. This may
be important for longer runinng tests, such as here for more as 100 million steps. Usual, if the
signals on any clock edge are interesting, the simulation time is lesser and focused on module
functionality. This is not a principle approach, it is sensible.

6.1.6. Output recorded signals

The output of the recorded signals is only a simple writing of all StringBuilder registered in the
TestSignalRecorder in the order of registering. The output written to a text file can be edited
for presentation also afterwards.

Java: output signals of horizontal recording usual for manually elaboration

6.1.6. Output recorded signals page
109

 this.outH.output(System.out);
 Writer fout = new FileWriter("build/test_BlinkingLed_Signals.txt");
 this.outH.output(fout);
 fout.close();

It is also possible to produce output signals in a file with vertical recording (one line is one time
stamp, signals in the line). This is not shown here yet. Especially this format can be converted to a
signal graphic similar as the output of FPGA simulation tools, with the possibility of zoom etc.

6.1.7. Automatically evaluation of test results

In the next code snippet two output lines of the horizontal signal recording are checked. The
special function checkOutput(…) as specific implementation for the check tests the pattern in the
line: The signals should be a minimal and a maximal number written one after another. The
evaluation starts after the first change, not from beginning, because elsewhere the minimal number
of characters may be violated.

Java: evaluation of test results for automatically test
 CheckOper.CharMinMax[] checkLedA = { new CheckOper.CharMinMax('_', 200,
9999),...
 //Note: a shorter low phase of LedB occurs on overflow of the high bit
counter.
 CheckOper.CharMinMax[] checkLedB = { new CheckOper.CharMinMax('_', 26,
200), ...
 String error = CheckOper.checkOutput(this.outH.getLine("io.ledA"), 20,
checkLe...
 test.expect(error == null, 5, "LedA off 200.. chars, on 200..300 chars" +
(err...
 error = CheckOper.checkOutput(this.outH.getLine("io.ledB"), 20, checkLedB);
 test.expect(error == null, 5, "LedB off 180..200 chars, on 26 chars" +
(error ...

 test.finish();

This test is programmed done. It produces with the following test.finish() a concise state
"Test ok or ERROR" which can be simple automatically evaluated. It means this and more tests
runs, and the result should be "ok" for all tests.

With this approach it is possible to test whether the functionality is proper (for the test cases) after
some changes in the sources. May be specific changes were done, and the results were checked
manually. But now the question arises: Has the change side effects? Is everything else still
running?

To answer this, such tests, which can be elaborately, are important.

Of course, the test cases, the stimuli and the evaluation can also be faulty or incomplete. In
conclusion, the effort for the test cases is often higher than the effort for the functionality itself. It
depends on the type of use (long-term or intermittent) whether this expense is appropriate.

6.1.8. The main routine for test

The main routine is called immediately from command line level. It creates the own class, and
starts some tests.

The top level TestOrg assembles all children TestOrg for more tests and a summarized
evaluation.

Java: TestSignalGenerator implementation complete for conditional output
 public static void main(String[] args) {
 Test_BlinkingLed thiz = new Test_BlinkingLed();
 TestOrg test = new TestOrg("Test_BlinkingLed", 3, args);

page 110 6.1. The main test source

 try {
 thiz.test_All(test);
 }
 catch(Exception exc) {
 System.out.println(exc.getMessage());
 exc.printStackTrace();
 test.exception(exc);
 }
 test.finish();
 }

Generally a try … catch should be present to catch non expected exceptions. With the stack
trace the reason may be able to find also in non debugging environments. For example any
uninitialized stuff may cause a null pointer exception which is not necessarily a flaw in the logic,
only a small programming mistake. In general, Java’s try-catch capability is well proven.

6.1.9. Test output preparation for the main level

This is the contribution of test signal output from the main test or the whole fpga to view and also
for automatically check the results. This top level output test results is not implemented in the top
level FPGA java file (here BlinkingLed_Fpga.java), instead in the test routine, to unburden
the top level java file. The access to the Pin signals is anytime possible in a public way, in opposite
to the situation in the modules, see next chapter.

The code snippet shows the complete TestSignalRecorder

Java: TestSignalRecorder implementation complete for conditional output
 class TestSignals extends TestSignalRecorder {

 StringBuilder sbLedA = new StringBuilder(500);
 StringBuilder sbLedB = new StringBuilder(500);

 private char cLedA, cLedB;

 /**This instance should be added on end using {@link
TestSignalRecorderSet#reg...
 * because it decides adding an information only depending of other
SignalReco...
 * @param sModule name, first part of line identifier
 */
 public TestSignals(String sModule) {
 super(sModule);
 }

 /**cleans all StringBuilder line and registered it. */
 @Override public void registerLines () {
 super.clean();
 super.registerLine(this.sbLedA, "ledA");
 super.registerLine(this.sbLedB, "ledB");
 }

 @Override public int addSignals (int time, int lenCurr, boolean bAdd)
throws ...
 BlinkingLed_Fpga fpga = Test_BlinkingLed.this.fpga;
 if(bAdd) { //only calculate state if
anothe...
 if(fpga.modules.ioPins.output.led1) {
 if(fpga.modules.ioPins.output.led1) {
 }
 }
 this.cLedA = fpga.modules.ioPins.output.led1 ? 'A': '_';

6.1.9. Test output preparation for the main level page
111

 this.cLedB = fpga.modules.ioPins.output.led2 ? 'B': '_';
 this.sbLedA.append(this.cLedA);
 this.sbLedB.append(this.cLedB);
 return this.sbLedA.length();
 } else {
 return 0; // no own contribution to length, regard add, sub ordinate.
 }
 }

 /**This operation is here overridden to add the character of the led state
ins...
 * It will be called in {@link TestSignalRecorderSet#addSignals(int)} after
in...
 * Which character is added, this is determined by addSignals above in this
cl...
 @Override protected void endSignals (int pos) {
 while(this.sbLedA.length() < pos) { this.sbLedA.append(this.cLedA); }
 while(this.sbLedB.length() < pos) { this.sbLedB.append(this.cLedB); }
 }

 }

• The Recorder should define StringBuilder for each test signal for store and output, here two lines.

• The char cLed… are only locally, it stores the values for complete the lines in endSignals(…).

• The constructor has the name of the module as parameter. The hint in the comment is for the
order, see chapter 6.1.2 Instantiate a horizontal output recorder.

• The clean() operation should be overridden in the shown kind, should register the locally
StringBuilder calling registerLine(…).

• The addSignals(…) operation is subordinate here, it writes the state of the Led output pins, but
only if another module, here it is especially BlinkingLedCt has written something. This is
sufficient, because the Led signal is slow and long. The other module produces enough time
stamps to see what happens. But such decisions depends heavily on the test case. Hence the
output should tuned to the test case. On the other hand the test cases are often similar in output
requirements.

• The endSignals(…) is here overridden to produce the repeated character for the LED. The
standard implementation writes a space to separate hexa values, which is often the requested use
case.

6.2. Test support in modules

The decision which signals are to be output for the display of the test results can only be made in a
module itself, since only the module knows its own signals. This is often seen in a different way,
namely that the test case itself should determine which signals should be displayed. However, this
assumes that the signals are known and not changed. It also violates the private/public
encapsulation of content in modules.

But of course the decision which signals to display may depend on the particular test case. For
such possibilities more as one TestSignalRecorder inner class can be implemented. The
implementation can be done due to a specialized test case, but should be designed in a more
universal way. The question is which signals are interesting, for a detailed look at the module - or
to get an overview. The structure of the module, not the specific opinion of the tester, should be
determinative.

page 112 6.2. Test support in modules

6.2.1. Determination of information to record for output horizontal

For this example a specific detail is programmed in the next code snippet: It is the elaborately view
to the time spread where the low-bit counter overflows and triggers the high-bit counter. All other
occurrences are irrelevant, they are clarified. This is the interesting point in the module, and may
be also the interesting point for a global test view.

Java: TestSignalGenerator addSignals(…) with condition building
 @Override public int addSignals (int time, int lenCurr, boolean bAdd)
throws...
 BlinkingLedCt thism = BlinkingLedCt.this;
 int zCurr = this.sbCt.length(); // current length for this time
 int zAdd = 0; // >0 then position of new length for this
time
 if(thism.ref.clkDiv.q.ce) { // because the own states switches only
wi...
 if(thism.q.ctLow == 1) { // on this condition
 this.wrCt = 5; // switch on, write 5 steps info
 }
 if(--this.wrCt >0) { // if one of the 5 infos shouls be
written:
 StringFunctions_C.appendHex(this.sbCtLow, thism.q.ctLow,4).append('
'); ...
 StringFunctions_C.appendHex(this.sbCt, thism.q.ct,2);
...
 if(checkLen(this.sbtime, zCurr)) { // add the time information if
h...
 StringFunctions_C.appendIntPict(this.sbtime, time, "33'331.111.11");
...
 }
 zAdd = this.sbCtLow.length(); //length of buffers for new time
determin...
 }
 else if(this.wrCt ==0) { // end of the 5 steps, append as
sep...
 this.sbCtLow.append("..... ");
 zAdd = this.sbCtLow.length(); //length of buffers for new time
determin...
 }
 }// if ce
 return zAdd; // will be used in
TestSignalRecorderSet.addSignals(zAdd)...
 }//addSignals

Here the output is triggered if the counter reaches the value 1, back counting before zero-crossing.
Details of this are also used to present the common approach in
Java2Vhdl_Approaches.html#testOutp.

6.2.2. Store and restore the state of modules as well as the whole simulation state

For the example the following Store class is able to find in the common offered Reset module:

Java: Store class in a module
 /**Stores the state for special tests.
 * You can use this implementation as template for your modules.
 */
 public static class Store extends StateStoreFpga < Reset > {
 final Q q;

 /**Creates a Store instance, which refers the data from the {@link Reset#q}
in...

6.2.2. Store and restore the state of modules as well as the whole simulation state page
113

 * it is the PROCESS data, able to call after a defined simulation
procedure,
 * to resume later exact from this state.
 * @param time The time stamp of the simulation
 * @param src The reference to the module.
 */
 public Store(int time, Reset src) {
 super(time, src);
 this.q = src.q;
 }

 /**Restore the state to the same module, which is used on creation.
 * It is presumed that the {@link Reset#q} instance was not changed
meanwhile.
 * However, this is guaranteed if the Application Pattern Style Guide is
follo...
 * and also because all members in {@link Reset.Q} are <code>final</code>.
 */
 @Override public int restore() {
 super.dst.q = this.q;
 return super.time;
 }
 }

If you look to the description of the base class:

../../docuSrcJava_vishiaFpga/org/vishia/fpga/testutil/StateStoreFpga.html

you find also the pattern for application. This is not done in the simple Example.

The storage of the whole state of the simulation (all modules in the FPGA and also the
environment, test bed state) is helpfully if you want to simulate variants starting from a dedicated
state. You save the effort to reach the start state again from beginning.

page 114 7. Requests for Change (RFC) for the Java2Vhdl tool

7. Requests for Change (RFC) for the Java2Vhdl tool
This is just an incomplete list, only a simple collection.

It does not include fixes which are errors. It describes generally desired features.

RFC1 It should be checked that this….value is never used for VHDL generation in an
expression (right side) inside a process.

Why: Access to this accesses the new (not yet set) values. This is possible in Java but
not in VHDL. Access to given values in VHDL is anytime mapped to access to the z..
reference in a PROCESS constructor.

Prio: Because it is also possible to look manually to this fact, the prio is less.

Effort: middle (estimated)

RFC2 More conversions, if a BIT_VECTOR is detected used for numeric operations, it should
be automatically converted to a STD_LOGIC_VECTOR before usage.

Prio: If not available, the user should taken care about the types. Introducing conversion
functions in Java for VHDL is not recommended! Hence if it is desired, should be done.

Effort: not high, think about, do and test.

RFC3 @Fpga.PROCESS and also other should have a string designation. With this
designation and an additional config file the translator should regard this parts to Vhdl
translation or not.

Why: It should be possible to have more parts in Java, for test, for notice for
enhancements, or also for variants, than necessary in the particular VHDL result. This is
a little bit similar as conditional compilation in C/C++.

Prio: It is interesting, higher priority.

Effort: middle

RFC4 Usage of INTEGER variables

Why: May be interesting for some designs

Prio: Because integer operations are also possible with STD_LOGIC_VECTOR types it is lesser
prio. Only if a stakeholder desires it. The possibility to define ranges is not related to
common practice in other programming languages. The number of bits used is very
interesting for FPGA logic. But this is clarified also by STD_LOGIC_VECTOR. But maybe a
complete functionality should include it.

Effort: middle

7. Requests for Change (RFC) for the Java2Vhdl tool page
115

2023-04-12 by Dr. Hartmut Schorrig www.vishia.org

	1 Manual how to read, examples and support
	2. Motivation
	3. Java2VHDL - approaches
	3.1. Writing hardware logic in Java, principles
	3.1.1. Principle of functional simulation of synchronous state machines

	3.2 Timing relations
	3.2.3. Be careful because of glitches in logic

	3.3. Data types in Java for Fpga design in VHDL
	3.3.1. boolean expression and SIGNAL types with view to VHDL
	3.3.2. Use cases of STD_LOGIC definitions

	3.4. Modularity, with Object Oriented Approach
	3.4.1. Modularity in classic VHDL
	3.4.2. ObjectOriented approaches and their mapping for VHDL
	3.4.3. References (aggregations) in Object Orientation kind
	3.4.4. Interface technology in Java for VHDL
	Basics of interface technology
	References with interface type
	Implementation of an Interface from the whole module
	Interface agents or access instances
	Interface access instances for stubs (replacement for non existing module outputs)
	How does the interface technology works for Java2Vhdl

	3.4.5. Overview modularity

	3.5. Including existing VHDL files
	3.6. State machines, enum
	3.6.1. State variable with 1-of-n decoding
	3.6.2. enum definition in Java
	3.6.3. state variable as enum
	3.6.4. query state variables
	3.6.5. set state variables
	3.6.6. Nested and parallel states

	3.7. Test in Java
	3.7.1 step and update operations
	3.7.2 Input signals for test simulation in Java
	3.7.3 Output signals for manually evaluation of the test results
	3.7.4. Test of modules or the whole design on Java level

	3.8 Writing style of logic - data assignment versus situation thinking
	3.8.1 Style: Situation evaluation, program flow
	3.8.2. Style data assignment orientation (data flow)
	3.8.3. Ternary or condition operator in Java: condition ? a : b
	3.8.4. Solutions for pure VHDL
	3.8.5. Java2VHDL for condition operator
	3.8.6. Multiplexer in hardware design, problem of WHEN ELSE
	3.8.7. Programming in loops

	4. Java2VHDL - User’s guide
	4.1. Working tree organization for sources and tools
	4.2. The platform to edit the Java sources for VHDL
	4.3. Tools necessary for Java to Vhdl translation and test support
	4.4. The component srcJava_vishiaFpga
	4.5. The translation Java to VHDL
	4.6. Java source for top level FPGA class
	1. Java: class for the FPGA top level

	4.7. Java source for Pin definition FPGA class
	4.8. Java sources for Modules
	4.8.1. Connections and inner modules
	2. Java: class for a FPGA module, references and sub modules

	4.8.2. Inner class for records and process
	3. Java: class for a FPGA module, PROCESS classes <src>

	4.8.3. Included VHDL modules
	4. VHDL module mentioned in Modules
	5. Inner class describes the inclusion for a VHDL module (PORT MAP)
	6. VHDL output for this template of inclusion for a VHDL module (PORT_MAP):

	4.8.3 Constructor and init for a module
	7. .Java: class for a FPGA module, constructor and init

	4.8.4 reset, step, update and output in a module
	8. Template for reset, step, update, output in a module <src>

	4.8.5 Interface access agents in Modules
	9. Example for an interface access point

	4.8.6 Implementation of module interfaces
	10. Any specific interface for a module
	11. Implementation of the specific interface inside the module

	4.8.6. TestSignalRecorder in a module for Java based test
	12. Java: class for a FPGA module, Test support

	4.9 Java source for an emulated VHDL module
	13. Template for the Java class definition of an emulated VHDL module:

	4.10 Statements in Java and their translation to VHDL
	4.10.1 Variable definitions
	4.10.2 Assignments
	4.10.3 Expressions, Operations
	14. Java, Example Variables for expression:
	15. Simple boolean expressions in Java:
	16. The result after translation is:
	17. Comparison expressions in Java to set BIT and STD_LOGIC boolean:
	18. Numeric operations in Java 2 VHDL
	19. Shift operations

	4.10.4 Operands
	20. Operand access in a constructor of a process
	21. Access in output() or input()
	22. Operands for constants

	4.10.5 Special operations for bit vectors
	23. Bit vector operations
	24. concatBit variations

	4.11. Test organization on Java level
	4.11.1. General execution order for java execution of the FPGA functionality
	4.11.2. Execution order inside the FPGA for the test
	4.11.3. The TestSignalRecorderSet to record test signals from modules
	4.11.4. Evaluation of the recorder test signals

	4.12 Checking time between FF groups
	4.12.1 How to set timing constraints for place and route tool
	25. Timing constraints for Lattice Diamond

	4.12.2 Association between PROCESS variables and time GROUPs
	26. Start of PROCESS static class with time_ variable
	27. Start of PROCESS constructor with ce() condition and time GROUP selection
	28. Example for build to ce signals
	29. Access to clock enable with time definitions:

	4.12.3 Check of timing between Flipflops in Java

	5. The example Blinking LED, view to Java sources in respect to the FPGA description
	5.1. The top level FPGA java file
	5.1.1. Package and class definition, import
	5.1.2. The modules in the top level
	5.1.3. step(…) and update() operations
	5.1.4. interface agents in the top level
	5.1.5. test output in the top level

	5.2. The FPGA pin description file
	5.2.1. How to designate the ioPins file
	5.2.2. Input and Output inner classes
	5.2.3. Interface access to the Input pins

	5.3. A module file
	5.3.1. Package and class definition, import and module interface
	5.3.2. The references and sub modules of the module
	5.3.3. Inner static classes in a module which builds a TYPE RECORD and PROCESS in VHDL
	5.3.4. step(…) and update() operations
	5.3.5. interface implementation of the module
	5.3.6. interface agents or access in a module
	5.3.7. test output

	5.4. Instantiate of entities from other VHDL files (PORT MAP)
	5.4.1. How to use other VHDL files
	5.4.2. User stories for modularity with VHDL files
	5.4.3. Module (class) in Java for given VHDL files

	6. The example Blinking LED, view to Java sources in respect to test on Java level
	6.1. The main test source
	6.1.1. Class definition and instances to test and used for test
	6.1.2. Instantiate a horizontal output recorder
	6.1.3. Organization of a checked test
	6.1.4. Initialize stimuli (signals) for the simulation
	6.1.5. Run the simulation for this test case
	6.1.6. Output recorded signals
	6.1.7. Automatically evaluation of test results
	6.1.8. The main routine for test
	6.1.9. Test output preparation for the main level

	6.2. Test support in modules
	6.2.1. Determination of information to record for output horizontal
	6.2.2. Store and restore the state of modules as well as the whole simulation state

	7. Requests for Change (RFC) for the Java2Vhdl tool

